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Chapter 1

Introduction

1.1 Background

About four decades ago, professor Stewart Myers coined the term "real op-
tions" in a well-known paper [Mye77], observing that corporate investment
opportunities can be viewed as call options on real assets. Since then, nu-
merous researchers addressed investment opportunity under uncertainty by
using a real options approach. This research has established a theoretical
framework for the modeling and pricing of real options (see for example
[DP94], [Tri96], [AK98], etc.), and investigated a variety of real options. The
real options’ applications have been extended from natural resources invest-
ment [BS85] to a wide range of investment problems [CA03]. The business
community also shows a growing interest in real options. Many world fa-
mous companies, e.g., Boeing [MNO04], BP [LM97], etc., have adopted the
real options technique for project valuation and investment decision-making,.

Today, at least in academia, real options theory has been widely accepted
as an innovative tool for capital planning and asset valuation. The real
options theory argues that the asset operator can avoid downside scenarios of
an investment and maintain the upside profit by responding appropriately to
the outcome of the invested project. This is a logical and intuitive argument,
since any rational agent will perform this way if he or she is capable to do
so. This is also where the real options theory deviates from the traditional
discounted cash flow (DCF) method. The DCF method assumes that the
company has to accept all the possible outcomes of a project as a whole once
the investment has been decided. Furthermore, the DCF method views any

1



2 CHAPTER 1. INTRODUCTION

investment as a "now-or-never" opportunity, while in real options theory,
the investor may wait for some time until additional favorable information
validates the investment commitment [MS86].

Real options are embedded in many assets and projects, although the
value of these options is not always recognized. The risk of underestimating
the asset value always exists.

1.2 Motivation

Early real options applications were mostly found in the energy industry. And
since then, the energy industry has been a fertile field where an enormous
literature has been spawned. The energy industry has several reasons to
stimulate real options applications.

Firstly, the energy industry is characterized by its intensive capital ex-
penditure. Examples are oil field development and power plant investments.
Huge investment expenditure calls for reliable valuation and decision-making
tools.

Secondly, many energy assets bear certain kinds of operational flexibilities
[Ron02]. These operational flexibilities, along with the investment opportu-
nities, are the sources of option value that are embedded in energy assets.
More examples will be offered in Chapter 2 and Chapter 3.

Thirdly, the outputs of the industry are mostly traded commodities. The
petroleum products trading has existed for decades. Gas and electricity have
been recently deregulated, and they are now traded in exchanges in US,
Canada, Europe and Australia. Some energy-related derivatives, such as
weather derivatives, emission rights, come into trading as well. The exis-
tence of rich market data is important to make reasonable assumptions when
modeling the uncertainties. It will be difficult to assess the value distribution
that may result from a non-commodity related project.

Finally, companies in energy industries have the engineering culture to
adapt mathematical models.

This thesis focuses on the real options applications in the thermal power
sector. However, in the general introduction to real options applications to
energy industry, cases in oil and gas sectors are also presented. In the domain
of thermal power management, we found the following research opportunities.

Firstly, while various stochastic models are available to model the elec-
tricity spot prices, it is valuable to choose a best-performing model for a



1.3. STRUCTURE 3

specific market via empirical tests.

Secondly, while many researchers have modeled a thermal power plant
as a string of options, we need to develop more realistic models which can
incorporate the operational characteristics of a power plant. A load-servicing
power plant faces not only market risk, but also volumetric risks!, which
include both the supply side and the demand side risks. How the volumetric
risk factors can affect the power plant value is still poorly understood.

Thirdly, the spark spread? is the most important driver of an investment
in a power plant. Although the spark spread is not directly observable in
the markets, we can construct a spark spread time series from the observed
electricity and gas prices. Based on the spark spread process, we can value
a power plant and various investment opportunities.

This thesis aims to contribute to the real options literature by addressing
the above-mentioned aspects.

1.3 Structure

The remainder of the thesis is organized as follows.

Chapter 2 presents an overview of the real options theory. Classical types
of real options and the mathematical approaches to pricing real options are
discussed. Chapter 3 reviews real options modeling in the energy indus-
try, highlighting the cases in the oil and gas asset investment, power plant
valuation, and gas storage valuation. In Chapter 4, we study the empiri-
cal properties of electricity prices in a deregulated market and survey the
mathematical tools used for spot price modeling. Empirical tests with the
Dutch and German market data are performed with two spot price models.
Chapter 5 analyzes the option-based valuation of a gas-fired power plant and
how the value is affected by the operational constraints and customer load
uncertainty. In Chapter 6, we value a power plant investment licence as an
investment option. Modeling the spark spread with a one-factor model, we
derive the valuation formula for both base- and peak-load power plants and
price various investment options. Finally, Chapter 7 summarizes the main
conclusions, discusses relevant issues and suggests research directions in the
future.

'In Chapter 5, we will give a definition of volumetric risks in a power plant.
2In Chapter 2, we will give a definition of spark spread and spark spread option.
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From Chapter 2 to Chapter 6, each chapter itself is actually an indepen-
dent working paper addressing one specific issue encompassing real options
in the energy markets. Chapter 1 and Chapter 7 are a general introduction
and a summary of the whole thesis, respectively.



Chapter 2

Real Options Theory

2.1 NPV and DCF

The traditional method in capital budgeting is based on the discounted cash
flow (DCF) method. The value of a project is measured by the net present
value (NPV), i.e., the present value of the future cash flows minus the initial
investment outlay. The optimal investment rule is to invest if and only if the
NPV of the project is positive.

The DCF method has substantial drawbacks. The first drawback is that
it is not easy to estimate future cash flows of a project, because the price
of the output, the production rate, and the investment cost, are usually not
deterministic. Secondly, the DCF method uses a discount rate to reflect the
risks of these cash flows and this discount rate is unavoidably subject to
estimation errors. Thirdly, the DCF method does not take into account the
managerial flexibilities which are embedded in a project, such as the option to
delay an investment waiting for some uncertainties to disappear, the option
to expand or contract the scale of a project, the option to change the input
or output of the project, the option to abandon the project if the outcome
is extremely negative. In a DCF valuation, implicit assumptions are made
on both the expected scenario of the operating cash flows and the managers’
passive commitment to a certain operating strategy [Tri96].

bt



6 CHAPTER 2. REAL OPTIONS THEORY

2.2 Real Options Theory

Real Options Theory (ROT) or Real Options Valuation (ROV) approach, is
based on the analogy between investment opportunities and financial options.
A real option is a right, but not an obligation, to do something for a certain
cost within or at a specific time. With the ROV method, a project is con-
sidered an option on the underlying cash flows and the optimal investment
strategies are just the optimal exercise rules of the option.

The ROV approach overcomes the shortfalls of the DCF method discussed
in Section 2.1. The ROV considers all possible price paths for the underlying
project value or underlying commodity prices and assumes a distribution for
the underlying prices rather than a deterministic price assumption. More-
over, given the underlying asset being tradable and replicable, there is no
need to estimate the risk-adjusted discount rate since options are valued us-
ing the risk-free interest rate under the risk-neutral measure. Finally, the
ROV allows for the consideration of possible options that are embedded in
investment projects, in which the managers have the flexibility to respond to
the outcome of uncertainties.

The managers’ abilities to react to market conditions tend to expand
the value of the investment project by maintaining or improving the upside
potential and limiting the downside loss. As a result, the real options method
may accept a project with a negative NPV. With an option to wait, the real
options method may delay the execution of the investment activity.

The ROV is not considered an alternative valuation method to the DCF,
but rather as an expanded DCF [Tri96]. In the expanded DCF, the value
of any investment consists of two components: the traditional (static or
passive) NPV of the direct cash flows, and the option value of the managerial
flexibility. The difference between the traditional DCF value and the real
options value is the value of the options that are embedded in the investment
project.

2.3 Real Options versus Financial Options

In this section, we define financial options and introduce the three methods
for financial pricing. Next, we give a definition of real options and study the
analogies between financial options and real options.



2.3. REAL OPTIONS VERSUS FINANCIAL OPTIONS 7

2.3.1 Financial Options and Pricing

In the financial markets, an option provides the holder with the right to buy
or sell a specified quantity of an asset at a fixed price, which is called a strike
price or an exercise price, at or before the expiration date of the option. Since
it is a right and not an obligation, the holder can choose not to exercise the
right and allow the option to expire.

A financial option is characterized by the right, but not the obligation,
to perform a transaction. The underlying assets for financial options may be
stocks, stock indices, foreign currencies, debt instruments, commodities, and
futures contracts. The two basic types of options are call and put. A call
option gives the holder the right to buy an underlying asset for a specified
exercise price within or at a specified time. A put option gives the holder
the right to sell the underlying for a specified exercise price within or at a
specified time. The specified time, i.e., the life time of the right, is also called
the maturity time. Financial options are also categorized by the time when
they can be exercised. An American option can be exercised at any time
up to the expiration date. A European option can be exercised only on the
expiration date.

The key property of an option is the asymmetry of the payoff. An option
holder can take advantage of the upside risks and limit the loss to the price
of the option. In Figure 2.1, the payoffs of a call and a put option on a stock
price are given as an example.

If the stock price at maturity is lower than the strike price, the holder
of a call option will not exercise it, the loss is then limited to the price to
purchase the option. This is shown in the left panel of Figure 2.1. If the stock
price at maturity is higher than the strike price, the holder would exercise
the option, and obtain a payoff equal to the realized stock price minus the
strike price. There is no upper bound of the payoff but the lower bound of
the payoff is zero. The maximum loss is equivalent to the original purchase
price of the option.

Options are often categorized by their moneyness. If an immediate exer-
cise of an option leads to a profit, we call the option "in-the-money"!. To the
opposite, if an immediate exercise of the option leads to a loss, the option
is "out-of-the-money". An option whose underlying spot price equals to the
strike price is thus "at-the-money".

1 Before maturity, a European call option cannot be exercised. We still call it "in-the-
money" if the stock price is higher the strike price.
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The closed-form valuation of an option was first found by Black and
Scholes [BS73], and Merton [Mer73]. Their option pricing models are based
on some assumptions, the most important one is that the underlying price
follows a Geometric Brownian motion, which implies that the stock price
follows a lognormal distribution. Denote S as the underlying stock price, K
as the strike price, T" as the time to maturity, o as the volatility of the stock
price, and r as the risk-free interest rate. The Geometric Brownian motion
assumption implies

dS = pSdt + oSdz (2.1)
where p is the growth rate of the price, and {z;,t > 0} is a Brownian motion
process.

A European call A European put
T T T

15

101
101

Profit or loss
Profit or loss

| | | -10 | | |
0 5 10 15 20 0 5 10 15 20
stock price at expiration stock price at expiration

Figure 2.1: Payoff of European call and put options

Then the value of a European stock call option at time ¢ is given by the
Black-Scholes formula

C = SN(dy) — Ke " T=YN(d,) (2.2)
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where
_ In(S/K) + (r + a2 /2)(T —t)
e T 23

dgzdl—d\/T—t (24)

and N(.) is the cumulative probability of a standard normal distribution
function?.

Standard European or American options are sometimes called Vanilla
options. By contrast, exotic options are derivatives with more complicated
payoffs. Exotic options valuation techniques are of special interests to real
options researchers because real options usually possess more complicated
payoff structures than standard European or American options.

There are various exotic options. To exemplify, we have: Compound
options, which are options on options; Barrier options, which are options
where the payoff depends on whether the underlying asset’s price reaches a
certain level within a certain period of time; Asian options, which are options
where the payoff depends on the average price of the underlying asset during
part or all life of the option; Bermudan options, which are very close to
American options but the early exercise are restricted to certain dates within
the life of the option, and Basket options, which depend on the underlying
of a portfolio of assets.

If the payoff of a derivative depends not only on the final value of the
underlying asset, but also on the path followed by the price of the underlying
asset, we call this derivative path dependent. For example, Asian options
and barrier options are both path-dependent options. Only in rare cases do
we have analytic solutions for path-dependent options. Examples are found
for Asian options [KV90] and Barrier options [Bjo04]. In many cases, we can
use binomial trees to cope with the path dependency. Finally, Monte Carlo
simulation is the approach that can always be tried to value path-dependent
options when analytic results are not available.

2.3.2 Analogy to Financial Options

A real option is the right, but not the obligation, to take an action (e.g.,
deferring, expanding, contracting or abandoning) at a predetermined cost
called the exercise price, for a predetermined period of time - the life of the
option.

2 A standard normal distribution has a mean of 0 and a standard deviation of 1.
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A real option is a certain kind of flexibility that is embedded in a real
asset or investment project. A real option resembles a financial option in
many ways. Hence, there exists a close analogy between financial and real
options.

As an example, the investment opportunity in a project can often be seen
as a call option on the present value of the expected cash flows from the
investment. The analogy is shown in Table 2.1.

Call option on stock | Real option on a project

Current stock price Gross present value of expected cash flow
Exercise price Investment cost
Time to maturity Time until the opportunity expires

Stock price volatility | Project value uncertainty
Risk-free interest rate | Risk-free interest rate
Dividend Cash flow or value leakage

Table 2.1: Analogy between financial options and real options

Similarly, an option to abandon a project is analogous to a put option on
the project’s value. The exercise price is the salvage value of the equipment.
The other analogies are the same as in Table 2.1.

However, real options are more complex than financial options. The major
difference is that the underlying assets of real options are not tradable. Non-
tradable real assets may earn a return below the equilibrium rate of return
expected in the financial market. The rate of return shortfall necessitates a
dividend-like adjustment. In option pricing, we mostly apply a risk-neutral
valuation, by using the certainty-equivalent or risk-adjusted growth rate,
which is equal to the actual growth rate minus an appropriate risk premium.
More details about risk-neutral valuation of real options will be addressed in
Section 2.5.

2.4 Taxonomy of Real Options

By the type of flexibility that the operators may have in the operation of an
asset or a project, real options are classified into several categories. Following
the rich literature, we briefly introduce: the option to wait, the option to
abandon, the option to expand/extract, the option to switch, compound
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options, and rainbow options. In each option type, an example in the energy
applications is given. More details in the classification of real options are
found in [Tri%6], [AK98] and [CA03].

The option to wait (or a deferral option) is found in most investment
projects. It is an American call option on the project value at the exercise
price- the money invested in getting the project started. The lease contract
on undeveloped oil field is a typical example where the option to wait is
remarkably valuable. The unfolding of part of uncertainties in the project is
thought as the source of the option value.

The option to expand/contract (scale option) is an American type option.
With this kind of flexibility, the operating scale can be altered in response
to the market conditions. The option to expand the scale of a project by
committing more investment is an American call. The option to scale back
by selling a fraction of a project is an American put. In extreme cases,
the production may be halted and restarted. Moreover, the owner of such a
flexible asset may have more than one specified time points to exercise the
option. In this case, we call it a Bermudan option.

The option to abandon a project for a fixed price is formally an American
put. If market conditions decline severely, the owner of the project can give
up the project permanently and realize the salvage value. This option may
be valuable for some capital intensive investments.

The option to switch may contain a wide variety of flexibilities, which
allow the owner of an asset to switch at a cost between two modes of op-
eration. According to price or demand changes, the owner can change the
output mix of a facility. For example, a CHP? plant can decide the weight
of power and heat in its production. Alternatively, the same output can be
produced by using different types of inputs. For example, an IGCC* power
plant can choose to burn the cheapest fuel. Switch options can be viewed as
portfolios of American call and put options.

Most real-life projects fit into the category of compound options, which
is also known as options on options. That is because a collection of various
options are often involved in real-life investments. In phased investments,
each phase is an option that is contingent on the earlier exercise of other

3A combined heat and power (CHP) plant is flexible in its output mix, which consists
of heat and electricity.

4 An Integrated Gasification Combined Cycle (IGCC) power plant is flexible in the fuels
to use; apart from the synthesis gas, it may fire oil coke, heavy refinery liquid fuels, natural
gas, biomasss, and urban solid waste, among others.
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options. A good example is given by upstream petroleum investment, where
the option to produce oil depends on the option to develop the reserve. In
sequence, the development option depends on the decision made in the ex-
ploration stage.

Simple options have only one source of uncertainty, namely, the price of
the underlying asset. However, most real options’ value is driven by mul-
tiple sources of uncertainty. These options are called rainbow options. As
an example, an undeveloped oil reserve can be considered a rainbow option,
in that the owner’s choice whether to develop the reserve is affected by two
sources of uncertainty. The first is obviously the price of oil, and the sec-
ond is the quantity of oil that is in the reserve. To value this undeveloped
reserve, we can make the simplifying assumption that we know the quantity
of the reserves with certainty. Also, uncertainty about the quantity can be
accounted for as a second factor in more complex models. The spark spread
option is another example, where the electricity and gas prices are the two
uncertainties.

The classification of real options provides an easy intuition for under-
standing the flexibility features in an asset. However, this taxonomy is not
rigid. A real-life real option does not necessarily fall into only one of the
listed categories. An example is a peak power plant, which we discussed
above is regarded there as the option to alter its operational scale. Note that
it can also be easily regarded as an option to switch between two operational
modes. Fortunately, this ambiguity in real options taxonomy does not affect
our quantitative analysis of the option value, since when we price these op-
tions, it is the generated cash flows in different scenarios that matters, not
the name we call them.

2.5 Approaches to Real Options Pricing

The valuation of a real option can be viewed as an investment optimization
problem under uncertainty. The idea is to maximize the NPV of the asset
incorporating the relevant managerial flexibility, but subject to operational
constraints.
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2.5.1 Analytical Approximation

Two parallel methods, namely dynamic programming and contingent claims,
can be exploited to address a real options optimization problem.

Dynamic Programming

Dynamic programming is a standard technique for dynamic optimization. At
each point of time, we split the whole sequence of decisions into two parts:
the immediate decision, and the remaining decisions, all of whose effects
are encapsulated in the continuation value. To find the optimal sequence
of decisions we work backwards from the last decision point. At the last
decision point, there is no continuation value, so the best choice is easy to
make. Then at the point before that one, we know the expected continuation
value and therefore can optimize the current choice.

We use the state variable to describe the market and/or physical condi-
tions of the asset. Let z; be the state variable at any date or discrete time
period ¢, and x; is an Markovian process. At each period ¢, the asset owner is
able to make some choices for the operation of the asset. We represent these
choices with the control variable u;. We denote the immediate profit flow
as m(zy, u) and Fy(z,) the value of the asset. Further assuming a constant
discount rate p, then at each time point ¢ the asset value must satisfy the
following Bellman equation®:

Fy(x,) = H}gx{ﬂt(xt, uy) + Ey[Fiy1(2eg1)]} (2.5)

I+p
where E4[.] is the expectation operator at time t according to a real world
measure.

Implicit in this equation are the assumptions that the remaining choices
Ugi1, Ugyo, ..., are already optimal in the continuation value. So only the im-
mediate choice uy is left for the optimal decision. The first term on the right-
hand side is the immediate profit, and the second term is the continuation
value. The objective of the problem is to decide for the period ¢ the optimal
control variable u;, which maximizes the sum of these two components.

In continuous time, a deferral investment option can be approximated by
a binary decision problem, i.e., the firm is left to choose to invest or not at

5 A Bellman equation is also called an optimality equation or a dynamic programming
equation, named after its developer Richard Bellman. An introduction to Bellman equa-
tion and dynamic programming can be found in [BD62].
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each time ¢. Assume the state variable follows a continuous GBM as defined
in equation (2.1), i.e
dz

—L = adt + odz (2.6)
T

The firm can either receive a cash flow 7(z,t) by continuing with waiting, or

exercise the investment to get the payoff (x,t). Then the Bellman equation

in (2.5) changes to

F(z,t) = max{Q(z,t), 7(z, t)dt + EF(x+dz,t+dt)}.  (2.7)

1+ pdt
Applying Ito’s Lemma and simplifying, we get the following well-known
partial differential equation [DP94]

1
20 202 Fpu(,t) + axFy(2,t) + Fy(x,t) — pF(x,t) + 7(z,t) =0 (2.8)
where the subscripts represent partial derivatives.

To solve for the equation, we need the two classic value-matching and
smooth-pasting boundary conditions.

Flar(t),t) = Qz*(1),¢t

1) (2.9)
Fo(a*(t),t) = Qu(a*(t).t

1) (2.10)

where x*(t) is the critical value on which point the investment is triggered.

The boundary condition in equation (2.9) says that if at z*(¢) the in-
vestment is optimal, then the project value F'(z,t) should be equal to the
termination value (z,t). Equation (2.10) is known as the "high-order con-
tact" [Sam65]. It implies that the values of F'(x,t) and Q(z,t), as a function
of x, should meet tangentially at the boundary z*(¢) for the reason of main-
taining continuity.

With these two boundary conditions, the value function F'(x,t) and the
critical value 2*(t) can be jointly solved.

Contingent Claims

Contingent claims analysis is based on the no-arbitrage theory in financial
economics. If the cash flows of the invested project can be replicated by a
portfolio of traded assets, the value of the project is then equal to the value
of that portfolio. Otherwise, there is an arbitrage opportunity to make free
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money by buying the cheaper one of the two assets or portfolios, and selling
the more valuable one. In asset pricing theory, the no-arbitrage condition
requires that the risks in the state variable can be spanned by some traded
assets.

In calculating the project value under this no-arbitrage assumption, the
project must be operated optimally. Again, if this is not the case, one can
buy the project at the price when it is not optimal and make a profit out of
it. Thus, the optimal policies for the investment can be determined at the
same time we obtain the value of the project.

Consider the same deferral investment option we analyzed with the dy-
namic programming method. Recall that this problem can be approximated
by a binary decision problem at each time ¢. The firm either receives a cash
flow 7(x,t) by waiting, or invest to get the payoff 2(x,t). The investor’s
expected return comes from two sources. One part is the expected price ap-
preciation «. The other part is the dividend (for stocks) or convenience yield
(for commodities). Let v = o + § denote the total expected return, where
d is the continuous rate of dividend or the convenience yield. The risk free
interest rate is r. Assume we invest one dollar in the risk-free asset and buy
n units of the firm’s output. This will cost (1 + nz) dollars. In time dt, the
risk-free asset pays a return rdt, while the other asset pays a dividend nxddt
and has a capital gain of ndz = naxdt+noxdz. Then the total rate of return

is
r+n(a+d)r onx

+
1+ nx 1+ nx
Compare this with holding ownership of the firm for the same interval dt.
Let the value of the firm be F(z,t), and this is the cost to buy the asset.
The dividend is the profit m(x,t)dt. The capital gain of the asset can be
calculated by using Ito’s Lemma on F'(z,t), i.e.,

dz (2.11)

1
dF = [Fi(z,t) + axFy(x,t) + 502962Fm(x, t)|dt + oxFy(z,t)dz  (2.12)

The total rate of return is
m(z,t) + Fy(2,t) + axFy(x,t) + 30207 Fyp (0, t) N orF,(z,t)
F(z,t) F(z,t)

dz (2.13)

In order to replicate the risk of project, we have

nr  xl(x,t)
l+nz  F(x,t)

(2.14)
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By the no-arbitrage principle, two assets with the same risk must have
the same expected return. Thus the drift term in the two equations should
be equal. This leads to the following PDE:

%UQ;C?FM(Q;, B+ (r — O Fu(w, £) + Fy(w, £) — rF(2,1) + (2, 1) = 0. (2.15)
subject to the same boundary conditions that are specified in equation (2.9)
and (2.10).

Note that this PDE is very similar to the one we derived for dynamic
programing method. A key difference between these two approaches is the
treatment of the discount rate that decision makers use to value cash flows.
In the dynamic programming approach the discount rate is chosen exoge-
nously to reflect the opportunity cost of capital adjusted for the perceived
risk of the particular project under consideration. Under the contingent
claims approach only the risk-free rate of return is considered exogenous.
The contingent claims approach assumes the existence of a sufficiently rich
set of markets in risky assets so that the stochastic component of the risky
project under consideration can be exactly replicated.

According to Dixit and Pindyck [DP94], the dynamic programing and
contingent claims methods for real options should give the same results of
valuation and critical investment thresholds, and the choice between these
two methods is a matter of convenience. In all their examples where both
methods are used, the results from both methods are exactly the same. How-
ever, when a constant discount rate is used, these two methods can only yield
the same investment values under restrictive assumptions [IW06]. These as-
sumptions require that discount rate in the dynamic programing method is
exactly the risk-free interest rate, which implies that the market price of
risk is equal to zero. The dynamic programing method is easier to incorpo-
rate operational constraints, but the usage of a subjective discount rate may
lead to valuation result which deviates from the market price of the asset.
The contingent claim method always gives the market price of the asset, but
requires the existence of a sufficiently rich set of traded assets.

Black-Scholes

The Black-Scholes formula is a result of contingent claim analysis under
strict assumptions. The six items in the first column of Table 2.1 are exactly
the drivers of the option value in the Black-Scholes formula in equation (2.2).
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Hence, as long as we can get appropriate estimates of the corresponding items
in the second column for the real options [CA03], we can directly calculate
the real option’s value with the Black-Scholes formula [BS73], as if the real
option is a financial option (see for example in [BE90] and [CAO03]).

Due to its simplicity, the direct usage of Black-Scholes formula has gained
some popularity among practitioners [CA03]. The problem lies in the impre-
cise nature of the analogy between financial and real options. Given the
non-standard and non-financial aspect of real options, coupled with market
incompleteness, the pricing of real options is more complicated. Even if we
believe in the exact analogy between financial and real option by ignoring
the limitations, the estimation of some of those items in the second column
of Table 2.1 is always not an easy task.

2.5.2 Numerical Methods

Both the dynamic programing and contingent claims methods for real options
reduce to solving a partial differential equation subject to certain boundary
conditions. The closed-form solution to the partial differential equation, e.g.,
the Black-Scholes formula, rarely exists. In most cases, numerical methods,
such as tree-building methods or simulations, are needed to approximate the
solution to the partial differential equation.

Lattice/Tree Method

A binomial tree can be seen as a special case of dynamic programming, in
which the decisions are binary. The binomial pricing model uses a "discrete-
time framework" to trace the evolution of the option’s key underlying variable
via a binomial lattice (tree), for a given number of time steps between valu-
ation date and option expiration. The state variable can either go up or go
down by a specific multiplicative factor (u or d) in the next step of the tree.
Following the classic Cox, Ross and Rubinstein (CRR) method [CRR79], we
have

u = VA (2.16)
d = e V™ (2.17)

where o is the volatility of the underlying stock price and At is the time
increment.
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For a Brownian motion in the risk-neutral world, the probability for the
state variable to go up, p, is given by

erAt —d

— (2.18)

p =
where 7 is the risk-free interest rate.

At each final node of the tree, i.e., at expiration of the option, the option
value is simply its intrinsic value, Max[(S — K),0], for a call option and
Maz[(K — S),0] for a put option. The option value at earlier nodes is
calculated using the option values from the later two nodes (either up or
down) weighted by their respective probabilities, p for up, and (1 — p) for
down. A recursive induction process with the following algorithm will work
out the option value at the starting time point.

Fi = e " [p x A T (1—-p) x Fﬁmt] (2.19)

where Fj is the option price at time ¢, I} 5, is the option value at time ¢+ At
given the underlying price at time ¢t + At goes up by a rate of u from time t,
FP A, is the option value at time ¢ 4+ At given the underlying price at time
t + At goes down by a rate of d from time .

As At — 0, the binomial method result converges to the BS value
[CRRT79].

For American options, the decision needs to be made at each node choos-
ing the immediate exercise or continuing to wait. In mathematics, the choice
is determined by

max{F; — K, i [px Fia+(1—p) X FtiAt]} (2.20)

Other lattice methods include trinomial trees [Boy86|, adaptive mesh
models [GAF99], etc. The lattice/tree approach is a flexible method and
thus widely used to price both vanilla and some more exotic options. This
approach is also relatively simple, mathematically, and can therefore be read-
ily implemented in a computer program.

For options with several sources of uncertainty, or for options with com-
plicated features, e.g., Asian options, lattice methods face several difficulties
and are not practical. Valuation of options contingent on multiple factors
becomes impractical due to the curse of dimensionality: the number of nodes
of the lattice increases exponentially with the number of stochastic factors.
In these cases, we can use the Monte Carlo simulation method. We will show
this in the next subsection.
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Monte Carlo Simulation

As a numerical method, Monte Carlo simulation has many inherent advan-
tages such as its ease of accounting for more than one uncertainty, ease of
incorporating different stochastic processes and non-standard payoff struc-
ture, etc.

The Monte Carlo simulation is a numerical integration technique that can
be used to find a risk-neutral value of an option by sampling the range of
integration [Boy77]. The fundamental theorem of no-arbitrage pricing tells
us that the value of a derivative is equal to the discounted expected value of
the derivative payoff under the risk-neutral measure. And an expectation is
an integral with respect to the measure.

Thus let us suppose that our risk-neutral probability measure is (), and
that we have a derivative D whose payoff depends on a set of underlying
instruments 51, S5 ..., S,. Given a sample w from the probability space (2,
the value of the derivative is D(S;(w), Se(w), .., Sp(w)) =: D(w). The current
value of the derivative is found by taking the expectation over all possible
samples and discounting at the risk-free rate, i.e., the derivative has value

where dfr is the discount factor corresponding of the risk-free rate to the
final maturity date 7'

We approximate the integral by generating sample paths and then taking
an average. Suppose we generate N samples, then we have a much easier
calculation as

N 1
Domdfry Y D(Q() (222)
wESample set

Let us assume the underlying asset price follows a Geometric Brownian
motion as in equation (2.1). To sample a path following this distribution, we
divide the time interval [0, 7] into M units of length ¢, and approximate the
Brownian motion over the interval ¢ by a single normal variable of mean 0
and variance dt. This leads to a sample path of

2

S(két) = S((k — 1)5t) exp([(1t — %)& + oV/5ter)) (2.23)

where k = 1,2,...M, ¢ «~ N(0,1) and is a random draw from a standard
normal distribution.
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Suppose the payoff function of one option on the underlying asset is
D(S,t). By generating N lots of M normal variables, we create N sam-
ple paths and so N values of D. Then the option value today given by the
Monte Carlo method is

N
Dy = dfr 37 D,(5.1 (224

J=1

Since we are able to keep track of the mean, maximum, minimum or
any other statistics of the simulated paths, the Monte Carlo method is well
suitable for valuing path-dependent options. Traditionally simulation was
presented as a forward-looking technique, so it was seen as inadequate to
deal with American options. In recent years, several researchers have pro-
posed different methods to match simulation and dynamic programming,
e.g., the Least Squares Monte Carlo (LSMC) method [L.S01]. This enables
the Monte Carlo method to price American and Bermudan options, which
are frequent in capital budgeting projects. We will apply the LSMC method
to the valuation of American investment options in Chapter 6.

The well-known drawback of the Monte Carlo method is its computational
expense. The accuracy of the result grows with the number of simulations,
and the required computational time grows exponentially with the dimension
of the problem.

2.6 ROT Applications

Real options theory is an innovative tool in capital budgeting. It reveals the
value of an investment project associated with uncertain market conditions
and suggests the optimal investment strategies, e.g., the optimal timing, scale
and technology. The real options valuation method, since its inception, has
been proposed as an analytic tool for all types of investment problems — from
natural-resource investments and new products to start-ups, acquisitions,
factories, information technology, and more.

Real options found theirs use mostly in industries characterized by large
capital investments, uncertainty, and flexibility — particularly oil and gas,
mining, pharmaceuticals, and biotechnology [Tri96]. Companies in those in-
dustries also have plenty of the market or R&D data needed to make confident
assumptions about uncertainties in real options analysis. In addition, they
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have the sort of engineering-oriented corporate culture that is not averse to
using complex mathematical tools.

Earlier applications are focused on natural resources investment oppor-
tunities. Examples include oil fields, mines, forests (see for example [MS86],
[PSS88], [BS85], [TW06]). We will discuss the real options applications in the
energy sector in more detail in Chapter 3.

R&D investment is valued as options to open up future growth oppor-
tunities [CT99]. A vacant land in the real estate industry can be seen as
an asset bearing options, since the owner can decide the timing and type of
building for the development (see for example, [Tit85], [Qui93]). A forest is
an option asset because the harvest schedule can be planned optimally to
maximize its economic value [IW06]. The manufacturing flexibility to op-
erate with different capacities is considered to be of significant option value
(see for example [Kul88], [HP92] and [Bol99)]).

Not only investment opportunities but also the capital structure of a firm
can be analyzed with real options theory [MT94]. Trigeorgis applied real
options to analyze credit risks that are encountered by financial institutes.

Strategic planning can be seen as a collection of real options [Lue98|. In
addition to the optimal action rule required in realizing the option value, the
managers can even take proactive measures under uncertainty conditions to
improve option value by pulling one or more of the six levers in Table 2.1°
[LM97].

ROT also applies to social life. Some interesting, although somewhat
strange examples are the applications in assessing the waiting value in a
marriage [Str03] and estimating the probability of suicide risk in the old age
population [LKO04].

2.7 Criticism and Defense of ROT

Real options theory has its root in the financial markets. However, the
assumptions made for the financial markets may not be appropriate in other
markets. This leads to criticism on the real options applications.

The first criticism on ROT comes from the doubt about the validity of
the no-arbitrage pricing approach in real assets. In financial markets, the
no-arbitrage pricing approach is based on the usage of portfolios of traded

6This leads to option-game analysis which integrates real options techniques and game
theory. More details are given in [ST04].
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securities to replicate the payoff of an option. Since most underlying assets
in real-life investment projects are not tradable, the no-arbitrage principle
seems to be losing its foundation.

Mason and Merton [MMS85] argue that the justification of real options
resembles the correctness of using NPV. A DCF analysis attempts to deter-
mine the value of an asset or a project as if it were to be traded. We identify
for each project a twin security which has the same risk characteristics and
is traded in the financial markets, and use the market required rate of return
as the discount rate.

According to Trigeorgis [Tri96], the asset owner can, in principle, replicate
the returns of a real option by a portfolio including shares of its twin security
and risk-free bond. For the no-arbitrage principle to hold in a non-traded
project, the option value must be the no-arbitrage value of the option on its
twin traded security. The only adjustment needed is to reduce the equilib-
rium rate of return expected in the financial markets by a risk rate-of-return
shortfall, a dividend-like adjustment. This is just the risk neutral valuation
of the real assets.

Dixit and Pindyck [DP94] argue that the use of contingent claims requires
the complete market assumption, i.e., stochastic changes in the underlying
uncertainty must be spanned by existing assets in the economy. The as-
sumption of spanning should hold for most commodities, which are typically
traded on both spot and futures markets, and for manufactured goods to the
extent that prices are correlated with the values of shares or portfolios.

The second criticism concerns the choice of a stochastic process for the
underlying asset price. In a Black-Scholes setting, the underlying asset price
is assumed to follow a continuous process. However, in a real asset, this
assumption may be violated. For example, jumps may occur in prices. In this
case, a deep-out-of-the-money option may be underestimated. A Geometric
Brownian motion may not be a good approximation for the underlying. This
problem can be overcome by employing more realistic models that implicitly
account for the non-standard price distributions. For example, we can use a
jump diffusion model, a regime switching model.

The third criticism concerns the exercise property of a real option. The
exercise of a financial option is instantaneous, i.e., when the action is taken,
the ownership transferred to the buyer. Real options cases are much more
complicated. The exercise of a real option may involve the need to build a
plant or to drill a bunch of wells. And these actions may take years to be
completed. In this sense, the lifetime of some real options may be less than
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the stated life.

In some defending arguments against this criticism, real options model is
thought to be able to factor in the technical need to incorporate the real ex-
ercise properties. In valuing the investment opportunity, the reduced lifetime
adjustment are considered [AC06].

Finally, real options techniques are regarded, mainly by practitioners, as
a "black box", due to the sophisticated mathematics, e.g., Partial Differen-
tial Equations, in real options, and the consequent lack of transparency and
simplicity [Tea03]. But thanks to the increasing power of computers, com-
mercial software vendors offer many user-friendly applications of complex
real options.

2.8 Concluding Remarks

Real options theory takes into account explicitly the managerial flexibilities
in assets or investment projects. Thus, it overcomes the shortfalls of the
traditional Net Present Value method in determining asset value and optimal
investment strategies.

Real options theory has its roots in the option pricing theories in the
financial markets. The resemblance of the investment in real asset to a
financial option validates the pricing technology to be transplanted in the real
asset valuation and investment analysis. In consequence, both the analytical
approximation and numerical methods can be employed to value real options.

Real options theory has been applied to almost all industries, and to
almost all aspects of decision-making problems in academia. In practice, it
has become both an important valuation method and a management tool.

With the deregulation of gas and electricity in many countries, the real
options technique sees an increasing importance in the energy sector.

In the next chapter, we will review the various applications of real options
to the energy markets.
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Chapter 3

Real Options In The Energy
Industry

3.1 Introduction

Real options theory has become a widely accepted tool for capital planning in
many industries. Due to its inherent merit of explicitly accounting for man-
agerial flexibility, real options methods outperform traditional discounted
cash flow methods by giving more realistic valuation results and more rea-
sonable investment suggestions.

The energy industry is a fertile field for real options applications. Early
real options literature was mostly found in the natural resources projects,
especially in the oil and gas upstream industry. A number of classic papers
were written in this line (see for example in [PSS88] and [BS85]). The lit-
erature has been enriched by [PS93] and [Dia04]. The oil and gas upstream
industry is characterized by its sequential investments. Real options are em-
bedded along with the process. The option to wait is the most important
type of real options in oil field investments, especially in undeveloped oil re-
serves. The oil price is regarded by most researchers as the underlying asset
in valuing oil reserves. Different stochastic processes are used to model oil
price dynamics. More complicated investment problems in oil field invest-
ment may include more than one type of real options and more than one
type of uncertainty. Compound options and rainbow options have been used
to address these issues.

One of the latest real options applications to the energy sector is in the

25
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electricity markets. The electricity markets have only been deregulated re-
cently in the US, Europe and Australia. As a consequence, power companies
are exposed not only to uncertain customer demand but also to fluctuating
electricity spot and forward prices. Only the generating unit with the lowest
marginal cost is called online to generate electricity. Thus the peak-load gen-
erators may operate only a small fraction of time. The owners of peak-load
power plants turn on or shut down the units in response to the difference
between electricity and fuel prices. This kind of flexibility in a power plant
is named spark spread option, which will be discussed in more detail later in
this chapter.

In addition to the spark spread option, there are many other flexibilities
that are of significant relevance to a power company. A hydro power plant
is known as a flexible asset with the possibility to manage the water level
in its reservoir. Thus, for a hydro power plant, the operator can choose not
only if it will run the turbine, but also when to generate electricity. As we
discussed in Chapter 2, for an IGCC thermal power plant, the operator has
the option to switch the fuels it burns, and for a CHP plant, the operator
has the flexibility to adjust the mix of its outputs — heat and electricity.

Many other assets in the energy industry include such managerial flexi-
bility and thus the corresponding real options. A gas storage facility can be
viewed as a time spread option on the spot gas price. An LNG plant can be
modeled as a spread option between using domestic gas and buying foreign
gas [ACO06]. Similarly, electricity transmission facilities can be thought of as
a spread option, or a location switch option [DJS01] [Ron02].

Emission allowance is a recent area that real options can be applied to.
The SO, trading system started in 1990. Electric utilities then have three
alternative choices: they can either buy SO, allowances from the emission
trading markets or retrofit the plant to accommodate low-sulfur coal, or in-
vest in a "sulfur scrubber". The optimal decision is given by real options
analysis [Her92]. The European Union Emission Trading Scheme started op-
eration in January 2005 in compliance with the Kyoto Protocol requirements.
During the first phase (2005-2007), the market participants receive the emis-
sion allowance for free. Thus power generation companies can choose either
to produce electricity by "consuming" the emission rights or to stay idle and
sell the emission allowance in the emission trading market.

The real options method aims at two related purposes: asset valuation and
investment decision-making. The implications of real options are twofold:
the short-term operation schedule of an asset and the long-term investment
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strategies. In this chapter, all these aspects are surveyed in different sectors
in the energy markets.

The remainder of this chapter is organized as follows. Section 3.2 intro-
duces real options modeling of oil and gas asset investments. Section 3.3
discusses the applications of real options in the electricity industry. Section
3.4 introduces the models for the valuation of gas storage facilities as spread
options. In Section 3.5, we present some concluding remarks and discussions.

3.2 Oil and Gas Exploration and Production

The petroleum exploration and development rights are often transacted by
government-created auctions. Market players always face the risk of paying
too much for an acquired property, or selling for too little. The high trans-
action frequency and the huge investment amount in the petroleum property
call for accurate and reliable valuation methods. Therefore, the ability to
value petroleum properties accurately plays a critical role in determining
the financial success or failure of oil and gas producers. Due to the various
sources of uncertainty (both economic and geological), the valuation of oil
and gas properties is not an easy task. In this section, we introduce how real
options has been developed as an innovative technique to meet this challenge.

3.2.1 The Investment Phases and Relevant Real Op-
tions

The investment of oil and gas fields can be described as a sequential option
process with sequential phases. These sequential real options together with
investment decisions in each stage are illustrated in Figure 3.1.

During the exploration phases, the managers make a decision on under-
taking wildcat drilling. The exploration expenditures are relatively small.
So, in most cases, exercising the option to explore is optimal.

In case of success, i.e., oil or gas being discovered, the firm has the option
to invest in delineation wells and additional 3D seismic tests, in order to get
more information about the volume and quality of the reserves. These are
the activities in the second phase — the appraisal phase.

If the information yields a promising prospect for the reserve, the firm
then exercises its option to develop by committing a large investment in
the develop phase. Otherwise, the firm can quit the undeveloped reserve by
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giving up the development right or wait until further favorable information.
The option value, especially from the option to delay investment in this phase
is important because of the huge capital expenditures involved.

Phase Oil/gas asset Embedded option(s)

¢ Exploration Wild cat field

option to explore
- (exercise)

e Appraisal Undelineated field : option to appraisal
< ~)(exercise)
¢ Development | Undeveloped reserves [ option to develop/produce
« Production developed/producing
reserves

producing reserves - _
with changed scale (exercise)

Figure 3.1: Oil and gas field real options

During the production life of the developed reserve, the firm has such
operational options as the option to expand the production, the option of
temporary suspension of the production, and the option to abandon the
reserve.

The whole process can be viewed as a compound option, in which the
options in a later phase depend on the exercise of the options on the previous
phase. To simplify the problem, we often focus on only one specific type
of option which is of particular significance in determining the investment
opportunity value. In practice, the option to develop is often the choice. In
doing so, we are just approximating the problem with an assumption that
the other options in the project can be ignored®.

!The value of the option to abandon a project is proved to be negligible in many
investment cases [NF04].
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3.2.2 Stochastic Processes for Oil Prices

The most important uncertainty in an investment is the price movements
of the underlying asset. For producing reserves, the oil price is directly
the underlying asset. For developed, or delineated reserves, the underlying
asset is the value of a developed reserve, which in turn is a function of oil
price. As an industry convention, a linear relationship is assumed between
the developed reserve and the wellhead oil price (for example see [MS86] and
[Dia04])?.

The choice of the stochastic process for the modeling of oil prices is the
starting point of the real options problem. For the same investment problem,
different oil price processes may yield different valuation results and therefore
imply different strategies. In the following context, we compare four different
oil price processes that are used in literature. They are Geometric Brown-
ian motion (GBM), Ornstein-Uhlenbeck, mean reverting jump diffusion, and
two-factor models.

The GBM process is borrowed directly from the Black-Scholes framework
in the financial markets. The underlying asset value follows a lognormal dis-
tribution with the variance growing with the forecasted time horizon, and
a drift that grows (or decays) exponentially. This model was proposed by
[PSS88] as a classical real options model for upstream petroleum applica-
tions®. Due to its simplicity and few parameters to estimate, this model has
been popular for real options modeling.

GBM has proved an appropriate approximation for the behavior of equity
prices. However, in the commodity markets, the mean reversion model seems
to be more realistic since the balancing force from the demand and supply
causes the market price to revert to a long-term equilibrium level (for more
discussions see [BMP98] and [Pin99)).

In many cases, GBM is a good approximation for real options models
(see for example in [Pin99], [Dia04] and [SS00]). However, GBM may be
inadequate if the spot price is too far away from a more reasonable long-
term equilibrium level. How far the spot price is differing from the long-term
equilibrium can be roughly observed from the slope of the term structure.

In a GBM process, oil prices are totally unpredictable in that every change

2Tn practice, the price of one unit of developed oil reserve underground is traditionally
set to be 33% of one unit of wellhead oil price.

3Note that in [PSS88], the underlying variable is the project value, not the oil price
iteself.
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in the oil price is a permanent shock in the long-term drift. To the opposite,
the mean reversion process assumes every price deviation from the long-term
equilibrium level to be temporary. The Ornstein-Uhlenbeck process is the
most widely used mean reverting process in financial modeling. This process
is used for oil prices as well.

These two extreme views on the price uncertainties are compromised in
some other models. The mean reverting jump diffusion model for oil price was
proposed by Dias and Rocha [DR98| by adding a jump term to the pure mean
reversion model. The Poisson jump [Mer76] accounts for the modeling of the
discontinuities in oil price. The jumps happen when there is abnormal news
in the market, and this specification makes the model not "too predictable"
as the pure mean reverting model.

Other important alternatives are the two-factor or three-factor models.
The two-factor model was first introduced by Gibson and Schwartz [GS90],
in which the oil price follows a GBM and the oil convenience yield follows
a mean reverting process. In [Sch97], a two-factor model assumes both the
logarithms of the oil price and the convenience yield are mean reverting.
The three-factor model is built on the two-factor model by further assuming
the interest rate to be stochastic. The two-factor or three-factor models are
more realistic than the one-factor mean reverting model, since in the former
models, the price movements are less predictable.

Schwartz and Smith [SS00] present another form of two-factor model. In
their model the logarithm of the spot price? is assumed to be the sum of two
stochastic components: the short-term price and the long-term equilibrium
price. The short-term dynamics is driven by the short-term shocks and follows
a mean reverting process. The long-term dynamics is determined by the
changes in the fundamental market conditions and it follows a random walk.
It is concluded that for many long-term investments, we may evaluate the
investment by using the equilibrium prices only. This would reduce to a
GBM model for oil spot price’.

3.2.3 The ROV Framework

The contingent claim introduced in Chapter 2 is often used in oil or gas
project valuation. Interpreting the investment project as a contingent claim,

4The spot price here is not the nearest futures price as a proxy for the spot, but a state
variable derived from the term structure.
>[NF04] uses this conclusion in power plant investment decisions.
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the project’s market value must satisfy the fundamental stochastic partial
differential equation. Thus, finding the critical threshold and project value
with real option methods involves solving a sequence of PDEs, together with
appropriate boundary conditions.

The Deferral Option

If we have a now-or-never investment opportunity, i.e., there is no option
for investment timing, the threshold is then determined by equating NPV to
zero, which will actually lead to the break-even point from traditional DCF
analysis. On the other hand, if we have the option to delay the investment,
we can solve for the threshold by equating the value of waiting and the value
of immediate investment. The optimal investment rule is then to invest if
NPV is equal or greater than the threshold NPV. Often, the threshold for
the optimal option exercise, is the price of the underlying output commodity
such as the price of developed reserve, or the oil price.

The option to delay is mostly considered in oil and gas field development
decisions. The pioneering paper of Paddock et. al [PSS88] uses the value of
one barrel of developed reserve, V;, as the underlying variable, which follows
a GBM given by

av

— = (r—=20)dt +odz (3.1)
where r is the risk-adjusted rate of return, ¢ is the dividend-like payout rate,
and o is the volatility of the unit value of developed reserve, and dz is the
increment of a standard Wiener process.

Denote by F'(V,t) the value of one unit of undeveloped reserve. Based on
the contingent claim derivation in Chapter 2, F(V,t) must satisfy

%02V2FVV(V, t)+ (r=0)VE,(V,t) + F(V,t) —rF(V,t) = 0. (3.2)

This equation is almost the same as equation (2.15) in Chapter 2, except
that here we do not receive a cash flow by delaying the investment. So the
term 7(V/, t) disappears in this equation. Let D be the per-barrel development
cost, the boundary conditions for the above PDE can then be written as

F(0,t) = 0 (3.3)
F(V,T) = max[V — D,0] (3.4)
F(V1) = V*—D (3.5)

Fy(V*,1) 1 (3.6)
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The first condition says that when the underlying price is zero, so is
the investment opportunity value. The second condition indicates that at
expiration, the option to develop will be exercised if Vi > D. The third and
fourth conditions are the value-matching and smooth-pasting conditions we
already know in Chapter 2, in which V* is the critical value of the developed
reserve, i.e., if V' > V* we should commit the investment immediately.

The closed-form solution for the above PDE only exists under special
conditions. The closed-form solution only exists when (1) an infinite time
horizon for the invest opportunity, i.e., F; = 0, and (2) the project does not
have an opportunity cost or dividend payout, i.e., w(V,t) = 0. If either of
the two requirements is violated, we have to solve the PDE with numerical
methods such as finite difference [BS78] [DP94], or binomial trees [PS93]
[ACO5].
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Figure 3.2: Undeveloped oil field value as a function of the unit value of devel-
oped reserve

The numerical examples in [PSS88] show that the critical value, V*, is
mostly significantly greater than the investment cost, D, as opposed to the
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DCF investment critical value, where V** = D. The result V* > V** val-
idates the value of waiting. In particular, before V' < V*  although the
undeveloped reserve is not optimal to develop, its value of option to wait is
still higher than the project value implied in the NPV method. Figure 3.2
illustrates these features.

Other Options

In order to the option to defer an investment, there are other flexibilities that
can be incorporated in the real options analysis. We consider the option to
temporarily shut down and the option to abandon.

Options to Shut Down. McDonald and Siegel [MS85] view the operating
asset with an option to temporarily shut down as an option to acquire the
project value V; by paying the variable production cost C;. Assuming the
output price P follows a GBM process as defined in equation (2.1), i.e.,

P
d? = adt + odz (3.7)

then the time ¢ payoff is
m = max(FP, — C}, 0). (3.8)

Further assuming 6 = r — « as the return shortfall in the output, and by
applying the risk-neutral pricing process, the current value of a claim on the
time ¢ payoff is

F(P,,Cy,t) = e "E%max(P, — Cy,0)] (3.9)
= Ve ' N(dy) — Ce ™ N(ds) (3.10)
where
 In(Ry/Cy) + [(r—0) +0%/2t
d = vy (3.11)
dy = dy— oVt (3.12)

Then the present value of the operating project with the option to stop
temporarily is obtained by summing up the separate values of all such time
t claims over the projects’s lifetime, 7" :

R= ZT: F(t) (3.13)
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Options to Abandon. The option to permanently abandon a project for a
salvage value, S, is considered in Myers and Majd [MM90] as an American
put option on a dividend-paying project. They assume the project value, V,
under risk-neutral measure, follows a GBM process as defined in equation
(3.1), i.e.,

av.
T
where 0 represents the instantaneous cash payout from the project.

Then the value of the option to abandon, F', which is function of V' and
t, must satisfy the PDE as defined in equation (3.2), i.e.,

(= 9)dt + odz (3.14)

%02‘/2}7{/\/ +(r—=0)VF, — F(V,t) —rF =0 (3.15)
subject to
F(V,0) = max[S —V,0] (3.16)
F(0,t) = S (3.17)
F(oo,T) = 0 (3.18)

At each time period, when the project value is below the critical value
V*(t), the project should be given up. The option value, F'(V*,t), is deter-
mined at the same time. As expected, the value of the abandonment option
increases with salvage value, project volatility, and project lifetime, while it
decreases with project value.

Compound Options

As we discussed in Section 3.2.1, the additional options, e.g., the option to
abandon, the option to expand or to contract, and the option to temporarily
stop a project, depend on the exercise of the development option, by which
the producing oil field is acquired. Thus we often consider the additional
options together with the main investment options. For example, if we have
the opportunity to invest in an undeveloped field which includes an option to
abandon, the option to develop the oil field is then an option on acquiring a
developed field with abandonment possibilities. In such cases, the investment
opportunity can be valued as compound options.

Geske [Ges79] derives a formula for valuing a European call option on
another European call option on stock in the absence of dividend payouts.
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This method is applied in [Er88] to value a satellite oil field as compound
options.

Brennan and Schwartz [BS85] outline the framework to model additional
options added to a main investment opportunity in a mine. They derive the
differential equations governing the value of the mine by using the contingent
claim method. They include not only the costs of opening and closing the
mine, but also the tax and inflation rate in the economy. The derived PDE,
together with the boundary conditions, suffice to determine not only the
value of the mine’, but also the optimal policies for opening, closing, and
abandoning the mine.

Following the spirit of [BS85], Bjerksund and Ekern [BE90] revisit the
compound options investment opportunity. With numerical examples, they
find that the value of compound options is actually the value of main invest-
ment options plus a premium for the additional flexibility. The additional
options lower the critical commodity price to commit investment. The op-
tion of temporally closing and reopening the mine has a larger effect than
the option to abandon.

Integrating Market and Technical Uncertainties

As a special characteristic of the oil and gas industry, the investment made
in the exploration stage as well as in the development stage can be viewed as
a venture or a gamble. During the past 30 years, 72% of all exploration wells
and 19% of all development wells in the US have resulted in "dry holes"
[Smi03]. Many reasons can cause this kind of failure, such as the barren
geological formations, deficiencies in the quality of the deposit that preclude
production at a reasonable cost, and the technical failure or breakdown of
drilling equipment.

In the traditional NPV framework, the dry hole risk can be directly in-
corporated by assigning a failure factor in the model. However, the failure
possibility of a reserve is often not a constant, but actually a stochastic
process. The normal approach to account for this additional uncertainty is
to rewrite the developed reserve value into a function of other state variables.

Cortazar et al. [CSCO01] define the mine value as a function of two state
variables, the output price, P, and geological-technical risk, G. Thus the

6The initial status of the mine matters for mine value. Thus an open mine and a closed
mine have different values.
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mine value is actually Z = PG. Here G is assumed to follow a zero drift
constant volatility Brownian motion as

G

e == Ugd’u}G (319)

and the output price P follows a GBM process under the risk-neutral mea-
sure.

ap _
_

The geological-technical risk factor is assumed to be independent of out-
put price P7, i.e.,

(7“ — 5)dt + Opdwp (320)

dw,dwg =0 (3.21)
Applying Ito’s lemma, we have

iz _

7 (7“ — (S)dt + Updwp + Ogd’wG (3.22)

The new state variable, Z, can be seen as a modified commodity price
with the same drift as P, but with an increased volatility

oz =1/0%+ 0% (3.23)

In this way, the joint price and geological-technical uncertainty are col-
lapsed into a one-factor model. Following the [BS85] framework, we can
value the investment option and additional operational options and obtain
the optimal investment strategies.

An alternative way to simplify the problem of two uncertainties is to use a
numeraire by calculating the ratio of the two state variables. This approach
was first proposed by Margrabe [Mar78] in valuing an option to exchange one
asset for another asset. Following the approach in [Mar78], Mcdonald and
Siegel [MS86] study the investment option when both project output and
investment cost are stochastic, Myers and Majd [MM90] investigate options
to abandon with uncertainties in both the underlying asset price and the
salvage value, Kulatilaka [Kul93] addresses the fuel switch option when two
fuel prices are uncertain.

"Given modern development of oil recovery technologies, this assumption may be not
true.
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3.3 Electricity Supply Industry

As a consequence of the deregulation in the electricity supply industry, the
traded electricity price provides the condition for pricing real options. In this
section, we survey the main real options in the operation and investment of
power generation and transmission assets.

3.3.1 Real Options in the Electricity Industry

A power plant can be viewed as a process that converts other types of energy
— for example, fossil fuel, mechanical, wind, solar, tides — into electricity. In
a competitive marketplace, owning a power plant can be viewed as holding
the real options to execute this conversion process. The owner can at each
time period decide whether to turn on the plant to produce electricity or
not. With investment opportunities to build or acquire a power plant, the
investor may have the possibility to wait until favorable market conditions
emerge.

The option to generate electricity by burning a particular fuel is called
the spark spread option. The spark spread is defined as the electricity price
minus the product of the heat rate of the unit and the fuel price. The value of
a thermal plant can be modeled as the sum of the values of a series of spark
spread call options over the lifetime of the power plant (see for example in
[DJS01], [GZ00], [TB02] and [Ron02]).

In addition to the spark spread option, a thermal power plant may have
other operational flexibility. As we discussed in the previous context, an
IGCC power plant has the option to switch the fuels during its operation.
This option is named the fuel switch option. The value of the fuel switch op-
tion can be calculated following the method proposed by Kulatilaka [Kul93],
in which the ratio of the two fuel prices is used as the new state variable to
simplify the problem.

A CHP plant has the flexibility to adjust the mix of its outputs — heat and
electricity, thus a spread option between the cost-adjusted electricity prices
and the heat price can be used to value the plant. Similarly, electricity trans-
missiton facilities can be thought as a spread option between the electricity
prices at two different locations [DJS01] [Ron02].

Electricity cannot be readily stored and consumers generally do not sched-
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ule increases or decreases in their consumption®, so generators must be pre-
pared to ramp up or down simultaneously with demand. Similarly, generators
must stand ready to provide voltage or frequency support if power quality
falls below operating tolerances. In regulated markets, spinning reserve’ and
other ancillary services'® are included in the system capacity charge to cus-
tomers. In competitive markets, generators can choose to offer ancillary ser-
vice or to generate electricity. This is another type of spread option between
the ancillary service price and spark spread option price.

Operators of hydro power plants must face more uncertainty such as the
precipitation, and they may have more flexibility than running a thermal
plant. The water in the reservoir is a storable commodity and can be trans-
formed into electricity immediately. Thus the hydro plant operator may
reveal more value by the management of the water level. And of course, this
makes the hydro management a more complex problem. Nevertheless, some
hydro plants also have pumps, with which water from a lower located lake is
moved up to the reservoir.

Emission allowance is a recent area where real options can be applied
to. The option value of emission allowance can be taken into account when
valuing a power plant [Lau06].

Another operational option in a power plant is the dynamic maintenance
of the unit [Ron02]. Since we have the option to decide the time to shut
down the power plant for the required maintenance, we can maximize the
power plant value under the price and load uncertainties.

We can also view the contracted fuel as an option, since we can choose
either to generate electricity with the contracted fuel, or to sell the fuel to
the market. In this approach, the contractual fuel is modeled as the spread
option between the fuel price and the spark spread option price.

In order to limit the length of this thesis, we restrict our discussion in
this subsection to a few important operational options, namely, spark spread
option, transmission capacity, fuel switch options, and hydro power plants.

8The charateristics of electricity demand and suppy will be addressed in detail in Chap-
ter 4.

9The spinning reserve is the extra generating capacity that is available by increasing
the power output of generators that are already connected to the power system.

10 Ancillary services are those functions performed by the equipment and people that
generate, control, transmit, and distribute electricity to support the basic services of gen-
erating capacity, energy supply, and power delivery.
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3.3.2 Spark Spread Option

The primary real option in a thermal power plant is the spark spread option.
A spark spread option is based on the difference between the price of elec-
tricity and the price of a particular fuel used to generate it. It is an option
that yields its holder the positive part of electricity price less the "strike" —
heat rate adjusted fuel price'!, at its maturity time. For a rational power
plant owner, the payoff obtainable at time ¢ must be equal to the value of a
properly structured spark spread call option.

The heat rate measures the efficiency of a generate unit. Traditionally,
heat rate is defined as the number of British thermal units (Btu) of the input
fuel required to generate 1 megawatt hour of electricity. From the definition,
we know that, the lower the heat rate, the more efficient is the unit.

A European spark spread call option written on fuel G at a fixed heat
rate Ky gives the option holder the right but not the obligation to pay Ky
times the unit price of fuel G at the option’s maturity time 7" and receive the
price of 1 unit of electricity. Let SL and SZ be the spot prices of electricity

and fuel at time 7', respectively. Denote the value of the option at time ¢ by
C(SL, Sk, Ky, t), then we have

C(SE, 8L, Ky, T) = max(SE — KySE,0) (3.24)

The cost-of-carry methods of constructing replicating portfolios for com-
modity derivatives cannot be applied to value electricity derivatives, because
electricity is non-storable. Since electricity futures or forward is tradable,
a method based on electricity futures or forward prices is used to fulfil the
contingent claim analysis for electricity derivatives [DJS01] [Ron02].

The electricity and fuel futures/forward prices, Fr and Fg, are modeled
by appropriate processes. Denote by V(Fg, Fg,t) the value of a financial
instrument that depends on the values of the electricity futures prices FF,
I and time ¢, then we can use the contingent claim analysis to derive a
PDE subject to some boundary conditions. A closed-form solution, if it
exists [DJS01], to this PDE, will be a function of Fy", F5", Ky and (T —t)
and resemble the formula for exchange options in [Mar78]. Let us assume
the European call option value has a form of C' (FE’T, FgT, Ky, T —1t).

Ignoring the operational characteristics of a power plant, the value of 1
unit of the time t capacity is then the value of the spark spread option at

1 The production of heat rate and fuel price is also called the dispatch cost.
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that time. Denote the virtual value of 1 unit of capacity of a power plant
by Vinit, then Vi, is equal to 1 unit of the plant’s time-t capacity over the
remaining lifetime 7' of the power plant, i.e.,

Vignit = / ' O(t)dt. (3.25)

Using spark spread options to value power plants is based on several
conditions. The most important one is that we must have continuous futures
or forward curves for both electricity and the fuel. In practice, the lifetime
of a power plant is much longer than the longest maturity time of futures
contracts. Therefore, we must use extrapolation method to construct a full
term structure [FLO3].

A thermal power plant has many operational constraints, such as the
startup or shutdown time and costs, minimum uptime, minimum off time,
etc. These operational constraints have important effects on the option-based
value. At the same time they complicate the power plant valuation problem
to a large extent.

When the operational constraints are taken into account in valuing a
power plant with a spark spread option model, additional dimensions are
incorporated, the closed-form solutions derived from classical Black-Scholes
models are not applicable any more, and numerical methods are called for.
In literature, two methods are proposed to value such options: Monte Carlo
simulation [TB02] [Ron02] and lattice method [DO03] [Ron02]. In Chapter
5 of this thesis, we will use Monte Carlo simulation to account for a variety
of operational constraints as well as the load uncertainty of a power plant.

3.3.3 Transmission Capacity

Energy companies frequently exchange a commodity at one location for the
same commodity at another location. In the case of electricity, the transmis-
sion lines, or grid, fulfill this mission'2.

In a real options framework, the transmission right between two locations,
location 1 and location 2, is modelled as a spread option between the elec-
tricity prices of these two locations. A European call option on this location

spread with maturity T gives its holder the right but not the obligation to

12Sometimes we use the term "wheeling" to describe the act of transporting electric
power over transmission lines.
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pay the price of 1 unit of electricity at location 1 at time 7" and receive the
price of K units of electricity at location 2. K may be called the transmis-
sion efficiency factor. The transmission cost from location 1 and location 2
can be taken into account by setting K being less than 1'3.

Take the unit prices of electricity at the two locations as the two underly-
ing variables, the location switch option, i.e., the transmission right, can be
valued in the same way as in Subsection 3.3.2, where the spark spread option
is valued. Again, when more operational characteristics are considered, nu-
merical methods such as Monte Carlo simulation and lattice methods must
be used to value these spread options [Ron02].

3.3.4 Operational Fuel Switch Option

The operational fuel switch option is defined as the flexibility for a power unit
to switch between different fuels in generating electricity. Nowadays, indus-
trial technology has enabled some power generating units to accommodate
different fuels. For example, some IGCC plants can burn oil, coke, heavy
refinery liquid fuels, natural gas, biomass, and urban solid waste [ACO05].

With the operational fuel switch option, the choice of the fuel is deter-
mined by the cost difference of the fuels and the cost to switch from one
fuel to another. Abstracting from many operational constraints, the gen-
erating unit should choose the fuel that minimizes the dispatch cost. The
option value of the fuel switch is equivalent to the incremental cost saving of
a flexible-fuel unit over the best of all the single-fuel units. Denote the value
of the flexible-fuel unit as V.., the value of the single-fuel generation unit
which can only burn fuel ¢ as V;(i = 1,2,...,n), then the value of the fuel
switch option, Vg is calculated as

VFS = ‘/ﬂeaj — Inax Vz (326)

1<i<n

For the sake of simplicity, we consider a base-load generation unit which
can use two fuels: gas and oil. Then the two modes are "gas-fired" versus
"oil-fired". Following the method used in [Kul93|, we use m = 1,2 to index
the gas and oil mode respectively. The cost of switching from mode j to
mode k is c;;. For example, ¢ is the cost of switching from gas to oil. If

13Electrical power is invariably partially lost during transmission, especially when within
lower voltage lines.
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the the unit continues operating in a mode, no switch cost will occur, i.e.,
Cmm = 0 for all m.

Following the spirit of [Mar78|, the relative price of oil to gas, P, =
Pt/ Pyas, can be used to simplify the modeling. Given the high degree of
substitution between these two fuel sources, it is reasonable to use a mean
reverting process for F;.

The revenue in each time period depends not only on the mode in which
the unit operates, but also on the market price of P, as well as time, ¢. Denote
the revenue in the time interval (¢, t+At) as I1(P;, m,t). Let r be the risk-free
interest rate. The present value of all future net profit flows given optimal
behavior henceforth is denoted by F'(P;m,t). Optimal behavior means that
the firm always chooses the current mode to maximize the present value of
current plus discounted expected futures profits net of switching costs. This
condition is given by a Bellman equation. Assume at time ¢ the firm is in
mode m, the equation is

F(Pm, t) = max{II(P,,1,t) — cy + MEF(Pyacd, t + A} (3.27)

where [,m = 1,2 and t =0, ...,T — At. The firm in each period chooses the
mode, [, that maximizes the value of the generating unit.

With the calibrated model for P, the above Bellman equation can be
solved with numerical methods [Kul93]. Then we have V., = F(F,1,0) or
F(Py,2,0), given the starting fuel is gas or oil. We can solve for the value
of the single-fuel generation units, V;, in the same way. Thus by equation
(3.26) we obtain the value of the fuel switch option, Vpg.

Monte Carlo simulations can also be chosen to value fuel switch options,
especially when we incorporate more operational constraints.

3.3.5 Hydro Power Plant Flexibilities

A hydro plant must have a reservoir, in which water is stored. By utilizing
the difference in altitude between the reservoir and the turbines, this po-
tential energy of water is converted into mechanical energy by letting the
running water propel the turbines. In the generators, this mechanical energy
is converted into electrical energy.

A hydro plant has more flexibilities than a thermal plant, because water
is a storable commodity and can be transferred into electricity immediately.
The operator of a hydro plant may reveal more value by the management of
the water level.



3.3. ELECTRICITY SUPPLY INDUSTRY 43

Some of the hydro storage plants also have pumps. And if pumps are
installed the owner also has the additional option to pump up water back to
the reservoir, i.e., to convert electrical energy back into potential energy. This
fact makes it possible not only to participate at high prices, i.e., turbining
at maximum when the spot price is high, but also to make profit from lower
prices by pumping water upwards in order to increase the amount in the
upper lake that can be used later on.

The stochastic uncertainties we face in a hydro plant are, according to
[FWZ02], electricity prices and inflows to reservoirs. The reservoirs store wa-
ter in a storage dam and new water is floating into the dam from precipitation
and melting snow. This inflow is random and seasonal.

The hydro storage plant has certain limits in its operation, depending on
the possibility to change the level of stored water. Normally, a maximum
and a minimum water level are specified for a certain reservoir. And due
to ecological and legal reasons, the spill, or overflow at each time period is
restricted to a certain level. Moreover, there are technical restrictions for
both turbining and pumping, a minimum and a maximum amount of water
that can be handled at each time period.

The marginal cost to produce electricity from a hydro storage plant is
very low, since production is not subject to any fuel costs. The marginal
cost is low enough to motivate selling base-load power. The owner of such a
plant consequently has the option in each period to produce at a marginal
cost. With the low marginal cost, one would like to produce in every period.
However, on the other hand, since the stored water is limited, by exercising
an option the water level decreases, the probability that an option in the
future can be exercised decreases. If there is a pump, by pumping up water,
this probability increases as the water level rises. The decision made today
about producing and pumping, will thus affect the power plant’s dispatch
possibilities in the futures. An owner of such a plant would try to sell this
power during peak hours to maximize the profit.

Hydro operation thus involves a continuous process of deciding whether
to release water now or to store it and release it later on. When there is
no pump, the decision variables for the dispatch are reservoir discharge, spill
and reservoir level [FWZ02]. When a pump is installed, the decision variables
are the turbining and pumping amount in each period (see for example in
[Ung02], [TDRO4] and [Doe06]).

The hydropower scheduling problem is modeled in linear stochastic pro-
graming, in which we seek the strategy to maximize expected cash flows
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subject to the appropriate restrictions. [TDRO04] works in the continuous
time and derives the PDE for the power plant value. This PDE, subject
to the boundary conditions, are solved with finite difference method. The
value of the power plant and the optimal strategy at any time are obtained
simultaneously.

[FWZ02], [Ung02] and [Doe06] model hydro power plants with linear sto-
chastic programing within discrete time periods. In all these articles, the hy-
dro scheduling is modeled as a portfolio optimization problem, in which the
possibility of trading financial contracts is incorporated. In linear program-
ing, the producers’ expected profit subject to a risk constraint is maximized
under the uncertainties of electricity spot prices, water inflows and financial
power contract prices.

The value of water in the hydro dam can be divided into three components
which build up the total value [Ung02]. The first component is the static
value that would be achieved by producing a constant amount without an
active strategy and equals the average electricity spot price. The second
component is the value stemming from the dynamic strategy resulting in a
price of produced electricity that differs from the average spot price. The
last component is the hedging value of the water, allowing us to take riskier
positions in the contract portfolio. The hedging value of a hydro plant is
supported by [Doe06], which finds out that utilities with a high degree of
flexibility should be valued within a portfolio. When being valuated as stand-
alone assets, these utilities would be underpriced in the market.

3.3.6 Investment Real Options

So far in this section, we have focused our discussion on the operational
flexibility in electricity assets. With these operational options embedded,
the electricity assets, for example, power plants, are assumed to operate
with the optimal strategies in order to realize their option-based values. In
operational options modeling, we were in fact assuming that once the power
plant is in place, it will be run with the same configuration until the end of
its lifetime. Moreover, we have assumed that if a plan to build a new power
plant is approved, the new plant will be built immediately. We will relax
these assumptions in this subsection when investigating the investment real
options.

In the context of capital planning, we go back to the classic real options
models as we discussed in Chapter 2. Namely, in power plant investments, we
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may have the option to wait, the option to abandon, the option to contract
(scale back a project), the option to expand or upgrade the invested power
plant, etc. In addition, we may have the option to choose among different
power plant technologies.

The option to abandon a power plant has a negligible value [NF04b]. In
contrast, the option to wait, the option to expand or upgrade the power
plant and the option to choose a best technology are of significant relevance.
In this subsection, we will investigate the option to expand or upgrade and
some technology selecting options.

Classic Investment Options

After a licence is approved for the investment of a power plant, there is
often a possibility to wait some time to execute the investment. In such
an investment, the American type of option to wait is relevant. Until the
expiration of the licence, we need to determine the optimal time to invest.

[ACO05] use a one-factor model to value the option to invest in a power
plant by assuming an exogenous electricity price. The stochastic gas price,
St, is modeled by an inhomogeneous GBM (IGBM) process. The IGBM
process will be discussed in Chapter 4.

The opportunity to invest in a power plant is modeled as an American call
option on an operating power plant. The net present value of an operating
power plant, V(S t), is a function of the current gas price.

A binomial tree is constructed in [ACO05] to price the investment options.
Denote W (t) the option value at time ¢. Then the decision at each time ¢
is to choose the maximum between the value of investing and the value of
waiting. In a binomial lattice, we have

W (t) = max[V (S, 1), e "2 (p W + paW 7)) (3.28)

where 7 is the risk-free interest rate, At is the time interval in each step in the
binomial lattice, p, (pq) is the possibility that the gas price goes up (down)
in next step, and W' (W) is the option value of the next step if the gas
price goes up (down).

The binomial tree can be calculated backwards from the maturity until
the time 0 value of the option is obtained. If we compare this value with that
of an investment made at the outset, the difference will be the value of the
option to wait. By changing the initial value for the fuel cost, it is possible
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to determine the fuel price at which the option value changes from positive
to zero. This will be the optimal exercise price for the investment.

As we discussed earlier in Subsection 3.3.2, the spark spread option is the
primary variable in determining the power plant value. Modeling the spark
spread involves at least two uncertainty sources — electricity price and fuel
price. One way to simplify the problem is to take the spark spread as a single
variable [NF04]. Although in [NF04], a two-factor model following the spirit
of [SS00] is used for the spark spread, the investment decision is assumed to
be determined only by the equilibrium price, and then the problem reduces
to the traditional one-factor real options modeling [DP04]. In Chapter 6, we
will give more discussions on the investment options using spark spread as
the single state variable.

In a long-term horizon, we may also have the possibility to upgrade or
expand a power plant. The option to invest in an upgradeable base-load
power plant is addressed in [NF04]. With a certain cost, the base-load power
plant can be upgraded into a more efficient peak-load power plant. Denote
F, as the value of the option to upgrade, Vz as the base-load power plant
value, Vp as the peak-load power plant value, we have

F,=Vp— Vg (3.29)

[ACO06] investigate the option to double the size of a power plant within a
finite time period. In valuing this expansion option, the gas price is following
a two-factor IGBM model as in [AC05], and the electricity price follows a
one-factor IGBM model. The Least Square Monte Carlo (LSMC) approach
proposed by [L.S01] is employed to price the American call option in a five year
period. In the numerical example, it is shown that the project of investing
in an expandable power plant has a much higher value than the value of
investing initially in two smaller plants.

The option to abandon in a power plant investment has been studied in
[NF04], where the possibility to abandon a power plant is considered as an
additional flexibility. It is shown that the abandonment does not change the
thresholds of the option to build the power plant. Thus, the power plant
investment decision can be made by ignoring the abandonment option.

Technology Choice Decisions

Under output or input price uncertainties, the choices between different tech-
nologies can be modeled as real options as well. Here, we introduce three
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case studies on these investment problems.

In Subsection 3.3.4, we have discussed the operational fuel switch options.
One property of these options is that their lifetime is normally very short,
mostly a few hours. If at a certain time, we have chosen to switch from
one certain fuel to another, in next few hours, we can choose to switch back
again. In the long term, the power plant may change from burning one fuel to
another, permanently. For instance, we can alter a coal-fired plant into an oil-
or gas-fired plant by committing a capital investment. We can call this option
the permanent fuel switch option. Opposite to the operational fuel switch,
a permanent fuel switch option is an investment problem, where a capital
investment is involved, and a permanent fuel switch option is economically
irreversible.

The permanent fuel switch is an American type option, which means the
owner can execute the investment to change the fuel at any time during a
certain time period.

[Her92] applies the real options method to an existing coal-fired power
plant that is required to comply with the new SO, emission limits introduced
by the Clean Air Act Amendments of 1990 in the U.S. By assumption, the
power plant operator can either purchase emission allowances from other
utilities, or switch fuels to a lower-sulfur coal, or install an SO, emission
reduction system. The two state variables considered are the future price
of SO, allowances, and the price premium per unit of low-sulfur coal versus
high-sulfur.

With a contingent claim analysis, the value of the fuel switch option can
be obtained by solving a derived PDE with regard to the two state variables.
Let Fgyy be the value of the fuel switch, Fsor be the value of the option to
install scrubbers and E(t) be the emission cost at time ¢, then the decision
rule for choosing the technology is

min[E(t), Fsw (t), Fscr(t)). (3.30)

[INFO04] consider the technology choice between an upgradeable base-load
power plant and a peak-load power plant. Along with the valuation of the
upgrade option, the critical equilibrium spark spread price, i.e., the upgrade
threshold, £ is obtained. Then the choice of optimal technology is deter-
mined by comparing the current equilibrium spark spread price, &, and & ;.
If £, < &,, we choose the upgradeable base-load power plant; if £, > &,
we choose the peak-load power plant.
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[AC05] study the value of an option to invest either in a NGCC' or
a IGCCY power plant. At each moment, the choice can be made among:
(1), to invest in the inflexible technology NGCC; (2), to invest in the flexible
technology IGCC; or (3), to wait and at the maturity give up the investment.
The problem is again modeled on a binomial lattice. At the final date, the
investor should choose the best alternative among the three choices. The
investment option value W at final date is then given by

W = max(Vigee, Vigee, 0) (3.31)

where V4. and V4. are the value of an IGCC and an NGCC power plant,
respectively.

Since an IGCC has the additional flexibility to accommodate coal as its
fuel, another state variable — the coal price — is added to the model in valuing
an IGCC power plant. The binomial lattice then has two dimensions. At
previous moments, the option value W must satisfy

W = ma’X[‘/;gcm Vngcca e_TAt (puuW++ +pudW+_+pduW_++pddW__)] (332)

where V4. and V4. are defined in the same way as in the equation above,
r is the risk-free interest rate, At is the time interval in each step in the
binomial lattice, py, (paq) is the possibility that both the gas and coal price
goes up (down) in next step, and W+ (W ~7) is the option value of the next
step if both the gas price goes up (down), p.q is the possibility that the gas
price goes up and coal price goes down in next step, W+ is the option value
of the next step if the gas price goes up and coal price goes down, py, is the
possibility that the gas price goes down and coal price goes up in next step,
W=+ is the option value of the next step if the gas price goes down and coal
price goes up.

Working backwards on the lattice until time 0, the initial investment
option value can be obtained. At time 0, if W = Vj.., the NGCC technology
will be adopted; if W = V4., we should choose the IGCC technology; if
W =0, the best decision at time 0 is then to wait.

1NGCC stands for a natural gas fired combined cycle .
I5IGCC stands for an integrated gasification combined cycle.
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3.4 (as Storage Facility

Gas storage facilities are built in order to bring gas as close as possible to
the markets served and to maximize the availability during the high demand
months. When the demand is low, such as in summer time in Europe, gas is
injected into storage. When the demand is high, such as in winter time, gas
is withdrawn to meet peak demand.

Gas storage facilities add value in two ways. Firstly, they are thought of
as an arbitrage mechanism that allows the owner to make profit out of time
spread, i.e., by buying gas in low-price months and selling gas in high-price
months. Secondly, they are assets with inherent operational flexibility.

The value of a gas storage facility can be regarded as the maximum ex-
pected revenues that the operator of the facility can obtain by optimally
operating the facility. In consequence, the option-based valuation lies in the
optimal injection and withdrawal strategies that capture favorable spreads
between the spot and the forward markets.

The option-based valuation of gas storage facilities is characterized as
a stochastic control problem. The state variable that describes the market
uncertainty is the gas price. A forward curve is able to determine the seasonal
price spreads. The control variable is the injection or withdrawal volume at
each time period. Moreover, just like a power plant, a gas storage has a bunch
operational constraints. The injection and withdrawal rates determine how
fast gas can be injected into or released from the storage. The higher these
rates are, the more flexible the gas storage is. Gas injection and withdrawal
also involve some fuel consumption and variable costs.

Two contrasting approaches have been used to solve this stochastic con-
trol problem numerically: PDE-based approaches and simulation-based meth-
ods. If we assume that the control only takes values from a finite set,
simulation-based methods can be used to solve the stochastic control prob-
lem [Ron02]. If we have to approximate the control as piecewise constant,
the PDE method is needed [TDRO03]. The latter method is introduced below.

The current price per unit of natural gas, P, is chosen as the state variable
and is assumed to follow a jump diffusion process as

dP = pdt + 0dX + dg (3.33)

where 1 is the expected rate of return on gas prices, o is the volatility of gas
prices, dX denotes the increment of a standard Brownian motion, and dgq is
a Poisson process with a jump size of v and a jump intensity of \.
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Under a risk-neutral measure, a gas storage valuation is obtained by max-
imizing its expected cash flows over its lifetime 7" [TDRO3] [Gem05]. The
optimization problem is described as

T
o /0 (¢ — a(I, ¢)) Pdr] (3.34)

subject to
Cmin(I) < ¢ < emax(]) (3.35)
[min g I < [max (336)
dl = —(c+a(l,c))dt (3.37)
where ¢ represents the amount of gas currently being released from (¢ > 0)

or injected into (¢ < 0) storage, I is the current amount of working gas
inventory, a(/,c) is the amount of gas that is lost given that ¢ units of gas
are being released from or injected into storage and I units are currently in
storage, Cmax is the maximum delivery rate, i.e., the maximum rate at which
gas can be released from storage as a function of inventory levels, ¢y, is the
maximum injection rate, i.e., the maximum rate at which gas can be released
from storage as a function of inventory levels, I,y is the maximum storage
capacity of the facility, I,,;, is the minimum storage capacity.

Denote V(P,1,t) as the corresponding option value of the gas storage
determined by equation (3.34). Employing Ito’s lemma on gas price P and
gas in storage I, we can derive a PDE with appropriate boundary conditions
to obtain the optimal strategy c(P,I,t) and corresponding optimal value
V(P,1,t).

Generally, if there is no gas in reserve, nothing can be released, the gas
storage unit is essentially a put option on gas price. To the opposite, the gas
storage unit at high reservoir levels is essentially a call option on gas prices.
For inventory levels somewhere between maximum and minimum capacity,
the gas storage facility is like a financial straddle with both put and call
properties.

3.5 Concluding Remarks

Real options have been intensively applied to the energy industry. Many en-
ergy assets, such as undeveloped oil fields, power plants, power transmission
lines, gas storage facilities, etc., can be modeled as options.
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The real options valuation of an energy asset involves optimizing the
operation of the energy asset over its lifetime. Under market uncertainties
which are represented by the dynamics of the state variables, the optimal
control variables, such as the operational mode (on or off), the volume of
energy release or injection, are determined by solving the PDEs that are
derived from either a dynamic programming or a contingent claim analysis.

The real options valuation of energy assets can not only reveal the value
of the operational flexibility which is ignored by DCF methods, but also
suggest the optimal operation schedules under current market conditions.
This managerial implications provide the valuable guidelines for the daily
operations of energy assets.

Taking into account the flexibility of energy assets and investment, the
option to invest in energy assets is actually a compound option on the option-
embedded flexible assets. In an energy investment, the option to wait, the
option to expand or upgrade may bring significant values.

The evolution of the market scenarios plays an essential role in determin-
ing the option-based asset values and the optimal strategies. In the next
chapter, we will investigate the deregulated electricity markets, and empiri-
cally test the electricity models in two European markets.

In the next chapter, we will survey different pricing models that are used
in deregulated markets. An empirical testing of prices models is also to be
done with the Dutch and German market data.
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Chapter 4

Electricity Prices Modeling

4.1 Electricity Markets

In this section, we present the background of electricity industry deregulation,
with a special attention to the European countries. We also introduce how
the markets are organized after deregulation.

4.1.1 Electricity Industry Deregulation

Electric power, often known as power or electricity, involves the production
and delivery of electrical energy. Once it is generated, whether by burning
fossil fuels, harnessing wind, solar, or hydro energy, or through nuclear fission,
it is sent through high-voltage, high-capacity transmission lines to the local
regions in which the electricity will be consumed. When the electricity arrives
in local regions, it is transformed to a lower voltage and sent through a local
distribution network to consumers.

Electricity was long considered a textbook example of natural monopoly.
Governments were involved heavily in the electricity sector either as owner
or as regulator. Traditionally, both the planning of the electric system and
its operations have been the responsibility of regulated integrated utilities
that generated, transmitted and distributed electricity. It was widely ac-
cepted that governments were the best choice to mobilize the large amounts
of capital necessary to develop the sector and bear the long time horizon for
recovery of costs. Particularly in developing countries, government leader-
ship in the development and use of electricity was part of a broader “social
compact”.

53
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In the past few decades, the electricity supply industry in many countries
has transited from vertically integrated monopolies toward a competition-
oriented market. Several forces stimulated the wave of electricity restruc-
turing. Among them, the main driving forces are the global trends in the
development of ideology, financing, and technological change [Jos03]. In ma-
ture industrial economies, the pressure for changes came from the emergence
of excess capacity and the inefficiency of electricity sectors. In developing
countries, the main driving force is the financing gap. The development of
new generation technology, such as the combined cycle gas turbine (CCGT)
has greatly reduced the minimum efficient scale of a generating plant, allow-
ing flexible investment and operation of generators. Finally, the restructur-
ing and privatization of the electricity sector has occurred in the context of
a wholesale privatization of several other state-owned industries. The ex-
perience of privatization in other industries, especially in the gas industry,
encouraged the restructuring of electricity sector.

The earliest introduction of market concepts and privatization to electric
power systems took place in Chile in the late 1970s. Argentina improved on
the Chilean model by imposing strict limits on market concentration. The
deregulation wave spread over other Latin American countries, including
Peru, Brazil and Colombia. However, deregulation in these countries gained
limited success.

The privatization of the electricity supply industry of UK in 1990 is viewed
as a milestone in the world electricity markets. The process was followed by
Australia, New Zealand, and regional markets such as Alberta in Canada.
The UK and the Nordic countries are viewed as the flagships of the reforms
boasting lower prices, and have maintained supply security and service stan-
dards.

In contrast, in the US, in the aftermath of the California electricity crises
in 2000 and 2001, the restructuring process has slowed down significantly
and many states have put their reform plans on hold.

In the European Union, the first Electricity Directive (1996/92/EC) was
passed in 1996, representing an important step toward market opening in
electricity supply industry. The EU member states were required to adopt
the directive by 1999. The new Electricity Directive (2003/54/EC) agreed
in 2003 requires that all non-household customers can freely choose their
electricity supplier by 1 July 2004, followed by full market opening to include
all household customers by 1 July 2007. Against the background of a world-
wide slow-down in the pace of electricity reform, the centrally driven effort
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by the European Commission has been the main force keeping the program
on course [JP05].

In different deregulation processes, the market designs and institutions
differ from each other, but many of the underlying concepts are the same.
The common process involves separating the electricity generating and retail
functions, which are contestable, from the natural monopoly functions of
transmission and distribution. Meanwhile, a wholesale electricity market and
a retail electricity market are established, and a controlling agency, i.e., the
power system operator, is authorized to coordinate the dispatch of generating
units to meet the expected demand of the system across the transmission grid.

4.1.2 Electricity Trading

An electricity market is a system to carry out the purchase and sale of elec-
tricity, where the market price is determined by matching electricity supply
and demand. As a consequence of deregulation, electricity trading has grown
dramatically and numerous power exchanges have emerged'. Electricity is
defined as a commodity, since electron cannot be differentiated. However,
this “commodization” of electricity applied mainly at the wholesale level.

The role of the wholesale market is to allow trading between generators,
retailers and other financial intermediaries. Wholesale transactions in the
physical commodity are typically cleared and settled by the grid operator.

In the electricity wholesale market, many types of contracts have been de-
veloped. These contracts can either be sold on the bilateral market, which is
also named the Over-The-Counter (OTC) market, or on an organized power
exchange. Electricity contracts can also be categorized by their settlement
method into physical contracts which are aimed for delivery, and financial
contracts, which are settled in cash. All electricity contracts share three
characteristics: a defined delivery period, a certain amount of electricity, and
a price.

Due to the high transaction cost of spot electricity trading, spot markets
are usually organized by a power exchange. In most European countries, a
power exchange is a voluntary marketplace in competition with the classic
bilateral market. A power exchange provides a spot market (mainly day-
ahead) for electricity transactions on the electricity to be delivered on the

'In Europe, the main power exchanges include Nord Pool (Norway, Sweden, Denmark,
and Finland), EEX (Germany), Powernext (France), APX (Netherlands, Belgium, and
UK), Endex (Netherlands), Belpex (Belgium), OMEL (Spain), and GME (Italy).
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next day. Participants submit their purchase or sale orders electronically.
The supply and demand are aggregated and compared in the power exchange
to decide the market price for each hour of the following day.

In addition to the spot markets, the derivative markets are also orga-
nized to manage the financial risk associated with electricity price volatility.
Derivatives contracts traded in power exchanges include forward contracts,
futures, swaps and options. In the OTC markets, more exotic contracts, such
as swing options, bulk forward contracts, etc., are traded.

4.2 Behavior of Electricity Prices

Certain features of electricity prices distinguish electricity markets from fi-
nancial markets and, to a lesser degree, from most other commodity markets.
In this section, we examine the characteristics of electricity prices and discuss
the reasons behind these features.

4.2.1 Nonstorability

Many types of energy can be stored under different forms, while electricity
cannot be stored economically once generated. Electricity is extremely costly
to store. The technologies for storage, for instance hydroelectric pump stor-
age or batteries are quite inefficient. Combined with the high cost of storage
is the need to balance supply and demand second by second. A shortfall or
surplus of electricity can endanger the stability of the entire electricity grid.

Moreover, almost no end-use consumers of electricity even have the tech-
nology to observe, let alone respond to, real-time prices. Electricity demand,
especially the demand of residential users, is extremely inelastic in the short
run. Thus, little of the real time balancing can be done on the demand side.

The nonstorability of electricity makes it a very special commodity. Since
it is impossible to smooth out changes in production capacity availability or
changes in demand by means of storage, electricity needs to be produced and
sold "at the speed of light". Meanwhile, the cost of electricity — and therefore
its price — varies from moment to moment.
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4.2.2 Supply Stack

In a deregulated electricity market, the spot price is determined by matching
aggregated asks and bids for a specific time period. All the bids from the
market are arranged in a "supply stack". Knowing the characteristics of
the different plants in a given region, one can build the supply function by
stacking the units in "merit order", from the lowest to the highest cost of
production. Thus the prevailing electricity price will be the marginal cost
of the last unit that is called on to the grid. The logic behind the supply
stack is that a rational operator would first dispatch the unit with the lowest
marginal cost followed by units with higher marginal cost and so forth. This is
consistent with the motive for introducing competition to electricity markets.
In Figure 4.1 the solid line gives an example of a supply stack.

On the left side of the supply stack are plants that have very high capital
and operating costs and very low variable (fuel) costs. These plants should
be the first to be run and they generally run at full capacity all the time,
forming the base load. These "must-run" plants include nuclear units, some
steam-based fossil fuel plants, large coal-fired plants, and run-of-river hydro
units. Since the marginal cost — mainly the fuel cost — is very low once the
plant is up and running, the supply stack resembles a horizontal line for these
generation units. At the right end of the supply stack are the peak units,
which have the highest variable (fuel) costs. These plants are only turned on
under temporarily high demand conditions after other plants are being used.
At off-peak times, the peak units are conceived as reserve capacity. These
peak units may include some gas-, oil- or diesel-fired turbines. Between
the base- and peak-load units, the supply stack is constructed by mid-merit
units. The variable costs and capital costs of mid-merit units are in the
middle range.

As a whole, the electricity supply stack turns out to be a convex curve with
a long, flat shape on the left side rising in a steep slope to the peak units on
the right. The nearly vertical curve for the peak units reflects a tight market
condition when the demand approaches the total available capacity.

The dashed vertical line in Figure 4.1 represents the demand curve. The
spot price is determined by the intersection of the aggregate demand and
supply functions. A forced outage of a major power plant or a sudden surge
of demand due to extreme weather conditions would either shift the supply
curve to the left or drive the demand curve to the right, in both cases the
spot price can rise to an extremely high level.
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Figure 4.1: An example electricity supply stack

4.2.3 Characteristics of Electricity Prices

The nonstorability of electricity, along with the real-time matching mecha-
nism of supply and demand, lead to several extraordinary features in electric-
ity prices. In this subsection, we will discuss some of these features, namely,
the high volatility, mean reversion, seasonalities, jumps and local prices.

High and Varying Volatility

Volatility is a measure of price fluctuation. Defined as the standard deviation
of log returns, volatility measures the magnitudes of percentage changes in
prices over time. As a unitless measure, it allows the comparison of relative
price movements in different markets.

Prices in the energy market are marked by a volatility that is both high
and variable over time. This property remains particularly pertinent in the
electricity market. It is not unusual to notice annualized volatility of more
than 1,000% in hourly spot prices. On the APX market for example, in early
January 2000, the sudden jump from average levels of 44 Euro/MWh to 474
Euro/MWh translated to volatilities in the order of 1,500%. Volatilities of
hourly prices in some markets can reach 3,000%.
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As we discussed in Subsection 4.2.1 and 4.2.2, nonstorability of electricity
requires electricity supply and demand be matched on a real time basis,
subject to transmission capacity constraints. Since electricity demand varies
frequently to usage pattern and weather conditions, power plant outage may
happen unexpectedly and transmission capacity is limited, electricity prices
vary wildly accordingly.

Another feature of the price volatility is the dependence of volatility on
price. It is observed that price fluctuations are accompanied by fluctuations
in price volatility. We call this phenomenon heteroscedasticity. In peak hours
when supply is relatively tight and prices are high, power plant outages and
transmission congestion are most likely to occur. Furthermore, it will need
some time to restart the plant or transmission line and thus bring supply
and demand back into balance. With this reasons, extreme prices are likely
to be followed by other extreme prices. This phenomenon is also known as
the clustering effect?.

Mean Reversion

However volatile the electricity prices are, they tend to fluctuate around the
average level. This feature is called mean reversion. Most commodities’
prices have the feature of mean reversion [Sch97] [Pin99]. Mean reversion in

electricity prices have been agreed by many researchers (see for example in
[JB99], [EPV02], [WBT04], [HM04] and [GRO6)).

Changes in electricity prices are directly related to the marginal cost of
production. Marginal cost and average full cost per unit of production are
considered to drive the long-term electricity price trend. Large deviations
either upwards or downwards from the mean value are gradually mitigated
through the influence of fundamental market forces. As demand increases,
supply reacts by launching the generation units with respect to their marginal
cost. The less efficient generation units, i.e., units with the highest marginal
cost, will be started only in case of necessity. In short time, price fluctuations
are corrected by demand and supply balancing.

2[KRO05] declares an inverse leverage effect which describes the asymmetric response of
volatility to positive and negative shocks. Positive shocks amplify the conditional variance
of the process more than negative shocks.
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Seasonality

Electricity prices exhibit pronounced periodic patterns on time scales from a
hour to several months. Nonstorability of electricity excludes the possibility
of a deferred use. Hence, electricity prices fluctuate cyclically in response
to the variation in demand, which is in turn influenced by the weather and
other exogenous factors with various cyclical fluctuations. In markets where
hydro supply plays a significant role, the cyclical rainfall and thus level of
reservoirs also contribute to the seasonal effect.

Seasonal patterns in electricity prices are categorized into three time
scales: intra-day, day of a week and annual seasonalities. The intra-day
pattern comes from the strong change in consumption during day and night.
The on-peak and off-peak hours definition differs with markets. In the Ger-
man spot market EEX, the on-peak hours range from 8 a.m. to 8 p.m., and
the off-peak hours from 8 p.m. to 8 a.m. of the next day. In the Dutch
spot market APX, the on-peak hours range from 7 a.m. to 11 p.m., and
off-peak hours from 11 p.m. to 7 a.m. of the next day. The day of a week
pattern depends on differences in industrial activities between weekdays and
weekends. Finally, the annual seasonality is related to weather conditions
and electricity consumption patterns. In some markets, two peaks can be
observed in winter and summer time during one year. While in some other
markets, only one peak period is observed in winter.

Jumps

Price jumps are occasionally observed in electricity spot markets. Given
the feature of nonstorability, electricity prices are much more driven by spot
demand and supply considerations than any other commodities. The demand
of electricity in the short term is very inelastic. Therefore, prices can rise very
quickly to an extremely high level when the balance is disturbed from time
to time by disruption in transmission, generation outages, extreme weather,
or a combination of these circumstances. When the relevant asset is returned
to service, or demand recedes, prices quickly return to a typical level. Price
jumps are then observed. In some sense, jumps in electricity prices can be
considered the joint result of high price volatility and quick mean reversion.
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Market-Specific Prices

The electricity markets in the world vary from one place to another. On
the demand side, different environmental conditions and life-styles lead to
different consumption patterns. On the supply side, different fuel sources,
technologies, transmission networks, and ownership structures make regional
supply curves different. Additionally, regulations vary from market to mar-
ket. Market structures and rules are important drivers of the behavior of
prices in a competitive electricity market [Wol97]. These factors make the
price behavior very specific to a certain market. In another word, although
electricity prices in different markets share some common features, their be-
haviors may differ remarkably. For example, electricity prices in Nordic coun-
tries are often found to be significantly different from continental European
countries.

The fact that prices vary from market to market suggests us to accentuate
the economical fundamentals of individual electricity market when examining
its price behaviors. Models that perform well in one market do not necessarily
perform well in other markets.

4.3 Electricity Price Modeling

In this section, we survey different models for electricity spot prices. In
the beginning, we compare different approaches to electricity price modeling.
Then we discuss on how to deal with seasonality in electricity prices. After
that, we introduce various spot price models and discuss on how they can
capture electricity price properties.

4.3.1 Electricity Modeling Approaches

The modeling of electricity prices can be generally classified into three dif-
ferent approaches: (1), reduced-form models, which attempt to model the
price time series directly; (2), equilibrium models, which use the system fun-
damentals to determine marginal costs and translate these to prices; and (3),
hybrid models which attempt to combine the reduced-form and fundamental
models.

Fundamental models were developed under the regulated power market
system and are generally optimization procedures. This approach is to mini-
mize the total cost of production, subject to the power demand for the region
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as well as operational and environmental constraints. The electricity prices
are determined by the marginal cost of production.

Fundamental models are typically very detailed and demanding in data,
including loads, generation profile and environmental, operational and trans-
mission constraints. The model must take into account the uncertainties
around each of these driving factors as well. Different scenarios require sep-
arate model specification. This enormous computational expense renders
simulation approaches very costly in time. In addition, there is virtually no
mechanism for inclusion of existing market data in these simulations. An
example of this approach can be seen in [BL02].

The class of reduced-form models is generally adapted from traditional
financial markets. This approach attempts to specify the spot price process
directly from historical data. These models generally attempt to fit power
prices into the framework of financial models, mainly the interest rate term
structure models, which have been well studied and are often tractable. The
primary building block in this framework is a Brownian motion, or a Geo-
metric Brownian motion.

Reduced-form models are based purely on the market data, thus they
need to be modified to account for changes in underlying system conditions.
Due to the easy data availability, these models are the most popular models
for both researchers and practitioners. Due to data availability constraint,
we restrict our modeling to the reduced-form approach in this thesis.

The hybrid models are the combination of the reduced-form and fun-
damental models. The combination of market fundamentals and historical
price data gives an explicit link to the market. The hybrid model is shown

by some researchers to be a promising approach for electricity price modeling
[And02].

4.3.2 Treatment of Seasonalities

In reduced-form models, the starting point is to seek stochastic processes that
can capture the characteristics of electricity prices. Seasonality represents a
deterministic feature of the price, and thus can obscure the underlying price
processes. As long as seasonality is observed, it has to be described and
eliminated. When the calibrated model is used for price forecast, the final
predicted price is the forecasted stochastic price plus the seasonal compo-
nents.
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Seasonal Effects Detection

The spot price at time ¢, represented by X;, can be decomposed into two
parts [Pil98] [LS02]. The first part is the stochastic process P, referring to
the spot price in case where no seasonal effect exists. We will discuss the
form of P, in next subsection. The second part is the predicable, cyclical
component, which can be represented by a deterministic function of time,
F = f(t). The observed price is then described by?

X, =P+ f(t) (4.1)

When the seasonal effects are stripped from the observed prices, the sea-
sonalities can be modeled separately from the underlying "pure" stochastic
process. Thus, the first step is to detect and identify the seasonal properties
in the price series. With increasing level of complexity, three methods can be
employed to detect the frequency of seasonality [BD01]|, namely, the visual
inspection, the dummy variable methodology and the Fast Fourier transform.

The wvisual inspection method. With the visual inspection method, the
first step is to draw the price curve and to visually observe its behavior. We
can point out regularities in the frequency of appearance of the highest and
lowest values. To verify seasonality, a period of time that seems relevant
to define a cycle is determined and the price curve of each of this period is
superimposed. With this simple method, we observe if there are intra-day,
day of a week, and annual seasonalities.

The dummy variable method. The dummy variable method relies on re-
gressions. In detecting the annual seasonalities, for example, we assume that
prices are on average the same through the whole year except in December.
We then need to do a regression with the following equation

Xt :at+61Dt+et (42)

where X; is the price at time ¢, D; = 1 if P, is the price during December
and 0 otherwise, ¢, is the regression residual and e; -~ N(0,0?%). The average
price during the special month is

3Seasonality can also be modeled as a multiplicatively separable component. In this
case, the observed electricity price is described as

X, = P(t)f(t).
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and the average price during the rest of the year is

If E[P, | D; = 1] is significantly different from E[P; | D; = 0], i.e., 5,
is significantly different from 0, then seasonality is identified in the specified
month, December.

The Fast Fourier Transform. The Fourier transform introduces the idea
that any stationary time series can be decomposed into a sum of sine and
cosine terms. The continuous time Fourier transform is

—+00

X(w) = / (e dt (4.5)

—00

where X (w) is the frequency domain (amplitude) signal, x(¢) is the initial
data, ¢ is the imaginary unit in complex algebra, and w is the real frequency.
The Fast Fourier transform (FFT) is used to solve the numerical approxi-
mation of the continuous Fourier transform. In Matlab 7.0, the FFT routines
can be used to obtain the frequency spectrum of the price series, with the
high amplitudes in the spectrum indicating possible seasonality periods. The
FFT method is complex but general and can be applied to any time series.

Seasonality Modeling

Next, we introduce two methods, namely, the dummy variable method and
the sinusoidal function method, for seasonality modeling.

Dummy Variable Method. Knittel and Roberts [KR05] describe seasonal
effects in electricity prices by using a series of dummy variables. They use a
mean reverting model for the electricity price P;, which we will discuss in the
next subsection. These dummy variables allow the mean price level, u(t), to
vary across time.

pu(t) = oql(t € Peak) 4+ apl(t € Of f Peak) + asl(t € Weekend)
+aul(t € Fall) + as1(t € Winter) + agl(t € Spring)  (4.6)

where 1(.) is the indicator function. For example, 1(t € Peak) = 1, if t is
within peak hours, and 1(t € Peak) = 0, otherwise.
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For the parameter estimation of the mean reverting model, we need to
discretize the mean reverting process into an AR(1) model [DP94]. We can in-
corporate equation (4.6) into the regression, viewing «; as a variable consist-
ing of six binary variables. The statistical significance of «;(i = 1,2,3,4,5,6)
indicates the degree of seasonality with respect to different time horizons.

The Sinusoidal Function Method. Pilipovic [Pil98] proposes a method to
capture the seasonal behavior in energy prices by using sinusoidal functions.
In the case of electricity, this method has to be adapted to various seasonal
patterns. Pilipovic gives a description of f(¢) in equation (4.1) as

f(t) = Bs(cos(2mO(t —ta))) + Bgalcos(4ml(t —tsa))) (4.7)

where 3, is the annual seasonality parameter, ¢4 is the annual seasonality
centering parameter (time of annual peak), 54, is the semi-annual seasonality
parameter, and tg4 is the semi-annual seasonality centering parameter (time
of semi-annual peak).

The Pilipovic method is capable of modeling annual periodicity effects.
The intra-day and day of a week effects can also be incorporated by adding

corresponding dummy variables to the right-hand side of equation (4.7)
[LS02].

4.3.3 One-Factor Models

One-factor models are the simple models which can model the randomness
in electricity prices. Some one-factor models can also capture the mean re-
version in electricity prices. We will introduce the Arithmetic Brownian Mo-
tion model, the Geometric Brownian Motion model, the Ornstein-Uhlenbeck
model, the Geometric Ornstein-Uhlenbeck model, and the Mean Reverting
Proportional Volatility model.

Arithmetic Brownian Motion

The Arithmetic Brownian Motion (ABM) model assumes that the electricity
spot price follows a Brownian motion process, or a continuous-time random
walk. The fundamental differential equation is given by

dP;, = pdt + odZ, (4.8)

where dP; is the change in the spot price from time ¢ to time ¢ 4 dt, p is the
instantaneous drift term, o is the standard deviation of electricity prices, dZ;
is the increment of a standard Wiener process, so dZ; ~ N(0, \/@)
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The ABM model is the first formal mathematical model of financial asset
prices. Thus it is the foundation of most other models.

Geometric Brown Motion

The Geometric Brownian Motion (GBM) model is the most used model in
the financial markets. The differential equation for this model is

dPt = Mptdt + O'PtdZt (49)

where dP; is the change in the spot price from time t to time t + dt, u is the
instantaneous drift term, o is the volatility of electricity prices, dZ; is the
increment of a standard Wiener process, so dZ; ~ N (0, \/E)

According to equation above, the change in the price over time dt consists
of two terms. The first term pP;dt is the drift, or the deterministic term.
The second term o P,dZ; is the stochastic, or random term. Both the drift
and stochastic terms are proportional to the spot price level at time ¢.

Let x; = In(P,) and apply Ito’s Lemma to x;, we get

2
dwy = (j — %)dt +odZ, (4.10)

Solving for x;, we can derive the spot price at time ¢ , P;, contingent on
the spot price at time 0, F.

2

g
Pt :Poexp((,u—?)t—l—cht) (411)

where W; is normally distributed random variable with mean zero and vari-
ance t.

The logarithm of P, is thus normally distributed, and P, has a lognormal
distribution.

The simplicity and tractability of a GBM model lead to its wide usage in
asset pricing. For example, the Black-Scholes option pricing model is based
on the assumption that the underlying asset price follows a GBM process.

The drawback of the Brownian motion and GBM models is that they
cannot, capture some of the important features of electricity spot prices such
as mean reversion and jumps.
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Ornstein-Uhlenbeck Model

The Ornstein-Uhlenbeck (O-U) model is specially suited for modeling the
mean reverting behavior in prices. The O-U process is expressed by

where dP,; is the change in price from time ¢ to time t + dt, s is the mean
reversion rate, ¢ is the mean price, o is the volatility of electricity prices, dZ;
is the increment of a standard Wiener process, so dZ; ~ N(0,~/dt).

The O-U model is consistent with the mean reversion in electricity prices
over time. The larger the deviations from the mean price, the stronger
the mean reversion effect will be. Moreover, the O-U model is analytically
tractable. The price at a future time T', Pr, conditional on the initial price
Py, is an explicit solution to equation (4.12):

T
Pr=e¢ P+ (1—e )0+ e " / e dZ, (4.13)
0

It is easy to see that Pr follows a conditional normal distribution. The
conditional mean and variance are given by

Eo[Pr] = e P+ (1—e ") (4.14)
Vare[Pr)] = %(1—6—2”) (4.15)

Equation (4.13) can be interpreted as a weighted average of the current
process value Py, and the long-term mean, 6, with weights obtained from
discounting at an adjusted speed rate, k. The half-time at which the expected
value FEy[Pr] is halfway between the long-term mean, 6, and the current price,
Py, is given by

Thalfflife = (hl 2)/,% (416)

According to equation (4.15), the variance of Pr is increasing in 7" and

bounded from above by %

Geometric Ornstein-Uhlenbeck Model

The Geometric Ornstein-Uhlenbeck model simply assumes that the logarithm
of the price follows the O-U process. The geometric O-U process is expressed
by

dIn(P,) = k(0 — In(F,))dt + odZ, (4.17)
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where dIn(F;) is the change in logarithm of price from time ¢ to time ¢t + dt,
k is the mean reversion rate, # is the mean value of the logarithms of spot
prices, o is the volatility of the logarithms of spot prices, dZ; is the increment
of a standard Wiener process, so dZ; ~ N(0,/dt).

Alike an O-U model, a Geometric O-U model is able to capture the mean
reversion in electricity prices.

Inhomogeneous Geometric Brownian Motion Model

If we take the first term from the O-U model in equation (4.12), which gives
the mean reversion property, and the second term from the GBM model
in equation (4.9), which allows the model to satisfy the price-proportional
volatility, we have an Inhomogeneous Geometric Brownian Motion (IGBM)
model [BD02] [ACO05]. The stochastic process for the IGBM model is given
by:

dP, = k(0 — P,)dt + o P,dZ, (4.18)

where 6 is the level electricity price tends to in the long run, x is the mean
reverting rate, o is the instantaneous volatility of electricity price, dZ; is the
increment of a standard Wiener process.

The IGBM model is capable of capturing the mean reversion and price-
proportional characteristics in electricity prices. It differs from the O-U
process by the term o P,dZ; in the differential equation. This specification
precludes the possibility of negative prices [AC05]. In a special case when
0 =0 and a = —k, the inhomogeneous GBM process reduces to a standard
GBM process.

4.3.4 Two-Factor Models

In order to model more features of electricity prices, people use two-factor
models. Some two-factor models allow the volatility or the long-term price
to be stochastic. Other two-factor models describe the short-term and long-
term variations in electricity prices.

Stochastic Volatility

A one-factor GBM or O-U model can be extended to a two-factor model by
introducing a second variable. For example, a stochastic volatility can be
incorporated [DJSO01]. In [DJSO01], electricity prices follow an O-U process,
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capturing the mean reversion property, while the volatility is described by
another O-U process. Thus, we have

dP, = kp(0 — P)dt + V,dZ, (4.19)
AV, = ky(m —V,)dt + odW, (4.20)

where dP,; is the change in price from ¢ to t + dt, kp is the mean reversion
rate of electricity price, 6 is the long-term mean of electricity prices, xp is the
mean reversion rate of the electricity prices, V; is the volatility of electricity
prices, K, is the mean reversion rate of the volatility, m is the long-term mean
of volatility, o is the volatility of volatility, dZ;, and dW, are increments of
two independent standard Wiener processes.

Pilipovic Model

The two-factor model presented by Pilipovic [Pil98] allows the long-term
mean level of electricity price to be stochastic. The first factor is the spot
price, which is assumed to be mean reverting toward the long-term equilib-
rium price. The second factor is the long-term equilibrium price, which is
lognormally distributed. The dynamics of the prices are given by

dP, = k(Ly— P,)dt+ oPdZ, (4.21)

where dP, is the change in price from ¢ to ¢ + dt, x is the mean reversion rate
of electricity prices, L; is the long-term mean electricity price at time ¢, o is
the volatility of electricity prices, u is the drift of the long-term equilibrium
price, £ is the volatility of L;, dZ; and dW, are increments of two independent
standard Wiener processes.

Conditional on the spot price and the long-term equilibrium price ob-
served at time ¢, we can obtain the expected spot price at a future time T,
ie.,

K
K+ 1

E,[Pr] = Pe "I 4 Ly (e¥T=t) — g=r(T=1) (4.23)

If we let the long-term equilibrium price volatility, £ , be zero, the Pilipovic
two-factor is then reduced to the one-factor IGBM model.
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Schwartz-Smith Model

The Schwartz and Smith [SS00] two-factor model assumes the variation in
commodity prices are jointly explained two components: the short-term de-
viation and the long-term uncertainty. Let P, denote the spot price of a
commodity at time ¢, the spot price is thus decomposed into two stochastic
factors as

In(F) = x; + & (4.24)

where Y, is the short-term deviation in prices and &, is the long-term equi-
librium price.

The short-run deviation Y, is assumed to revert toward zero following an
O-U process

dx, = kX, dt + 0,dZ,, (4.25)

and the equilibrium price &, is assumed to follow an ABM process

dft = ,utdt + O'gng (426)

where dZ, and dZ, are increments of two correlated standard Wiener processes
with dZ,dZ¢ = p,.dt, o, and o¢ are the volatility of the short- and long-term
prices, respectively, and p, is the growth rate of the equilibrium price. The
mean reversion coefficient x describes the rate at which the short-term devi-
ations are expected to disappear.

These two factors are not directly observable in the markets. Move-
ments in prices for long-maturity futures contracts provide information about
the equilibrium price level, and differences between the prices for the short-
and long-term contracts provide information about short-term variations in
prices. Thus the parameters may be estimated from spot and futures prices.
Kalman filtering techniques are used to estimate these unobservable state
variables [SS00] [MT02]. The short-term/long-term model is proved to be
equivalent to the stochastic convenience yield model in [GS90], but the short-
term/long-term model is easier to interpret and work with.

Furthermore, the short-term and long-term two-factor model includes the
standard GBM and O-U models as special cases when there is uncertainty
about only one of the two factors.
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Jump Diffusion Models

The jump diffusion model was first suggested by Merton [Mer76] to price a
stock option. The key assumption made in [Mer76] is that the jump com-
ponent of the asset’s return represents non-systematic risk. This risk can
be diversified away and is not priced in the economy. The probability of
occurrence of jumps during a time interval At is given by

Prob[no events occur during (¢,¢ + At)] = 1— X\ + O(At)
Prob[the event occurs once during (¢, + At)] = A\ + O(At)
Prob[the event occurs more than once during (¢, + At)] = O(At)

where O(At) is the asymptotic order symbol, which can be defined by ¥(At) =
O(At) if limy,_o[W(At)/At] = 0, and A is the mean number of arrivals per
unit time, i.e., the intensity of the process.

The jump diffusion model is built by adding a Poisson jump term to
the mean reverting model. This specification implies that when an event
occurs, there is an instantaneous jump in the price of random size assumed
independent of the lognormal diffusion process. The jump diffusion model is
given by

dP, = k(0 — P)dt + odZ; + Jydg (4.27)

where dg; is a Poisson process with an intensity of A and J; is the jump size,
which follows a lognormal distribution, i.e., In(J;) ~ N(u, p*), 1 and p? are
the mean and variance of the jump size J;.

The jump intensity A can be assumed constant for simplicity [Bar99], and
it can also be allowed to vary over time [KR05], reflecting the fact that jumps
are more likely to occur at high demand times.

Due to their capability of capturing important features of electricity
prices, mean reverting jump diffusion models are chosen by many model-
ers (see for example in [Bar99], [Den99], [CW00], [EPV02] and [WBT04]).

One criticism of jump diffusion models concerns the mingling of mean
reversion components and jumps, which may lead to misspecification of the
true mean reverting behavior. For example, a sharp price decrease may
be considered both as a result of mean reversion force and the downward
jump movements. In order to distinguish these two effects, a level-dependent
signed-jump model is proposed in [GRO06], but much more complexity is
introduced. An alternative method to disentangle jumps and mean reversion
is to use a regime switching model, which we will discuss next.
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Regime Switching Method

A regime switching model allows electricity prices to jump discontinuously
between different states, with state dependent probabilities. Classic regime
switching models are studied by Hamilton [Ham94]. As a variant of Hamilton
model, a two-state switching model is proposed in [EM98] to model electricity
prices. The model is given by

Tt = fs(r) = P(Te-1 — Hg-1)) + € (4.28)

where z; is the natural logarithm of the daily spot price of electricity, s; = 1,2
is the indicator of states, ¢ is the autoregressive coefficient, &, ~ N (0, ai(t)),
O'g(t) is the variance of x; — p), and fiyq) is the mean value of z; in each
state.

Rather than the isolated and independent jumps specified in jump dif-
fusion models, the two-state switching model allows two states which can
persist. This is important because jumps in electricity prices are often driven
by extreme weather or plant outages, which tend to persist for a period of
time. In order to model the dynamic probabilities of price switching between
regimes, we need to specify a matrix of conditional jump probabilities. This
matrix is given by

pP— P P2 | _ P11 1 —pn (4.29)
P21 D22 1 —pao D22
where p;;(i,7 = 1,2) is the probability of x; being in state i conditional on
x;_1 being in state j.

Extreme Value Theory

For a long time, extreme value theory (EVT) has been used in different
areas to model the tails of a distribution that are induced by extreme events.
Recently, applications of this theory have appeared in finance and insurance,
where rare events may cause catastrophic losses.

The EVT method is not describing the entire distribution of the prices,
but focuses only on modeling the tails. As such, the entire price series is
modeled as a combination of ordinary time series and an EVT based tail
model. For example, the peak-over-threshold (POT) method in EVT deals
with those events in a certain data set that exceed a high threshold and
model these separately from the rest of the observations. After fitting a time
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series model to price return data, the residual series, which is close to being
independently identically distributed, is then modeled by the EVT method.

The EVT method is found to be able to model the extreme behaviors in
electricity prices [CGO05] [Han05].

4.4 Empirical Tests of Two Models

In this section, we empirically examine the electricity price behavior in the
German and Dutch markets and compare the two most popular models for
electricity spot prices: the mean reverting jump diffusion model (MRJD)
and the two-regime switching model (RS). These two models are capable of
capturing the volatility, mean reverting, and jumps, and are mathematically
tractable. We use in-sample goodness-of-fit and out-of-sample forecasting
error as the criteria to compare the performance of the two models.

4.4.1 Market Data and Price Properties

The main data to be used in this empirical study are the daily average prices
from the Dutch spot market APX (Amsterdam Power Exchange) and the
German spot market EEX (European Electricity Exchange). For the study
of the intra-day price patterns, we also use the hourly prices on some days.

The whole sample consists of data from January 1, 2001 to December
31, 2004. The reason why we chose this sample is twofold. On the one
hand, deregulation was in its infancy in earlier years before 2001, and the
spot markets at these two exchanges were not liquid. On the other hand,
the carbon dioxide emission trading was introduced in European Union in
2005, which is conceived as a structural change in the markets. From then on,
market participants have to face CO4 price movements and further regulative
uncertainty on CO,*. To take this fundamental change into account, new
factors must be included in the pricing models. This is beyond the scope of
this thesis.

The curves of the daily average prices in the sample period are plotted in
Figure 4.2. From visual inspection, electricity prices appear highly volatile
with occasional jumps and mean reversion. The statistical properties of

4During the first stage from 2005 to 2007, the emission allowances were granted to
energy producers for free. Affluent allowances at the first stage have led to intensive
debate on the allocation plan for the second stage starting 2008.
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logarithm of the daily average prices are reported in Table 4.1. The high
standard deviations of electricity prices imply high volatilities. For example,
a standard deviation of 0.50 in the logarithm of daily price in APX translates
into an annual volatility of 0.50 x /365 = 947%. This is far more volatile
than other commodities.

Table 4.1 also reports the non-normality of the electricity prices and re-
turns. The skewness is significantly different from zero. The kurtosis is
much greater than the level of a normal distribution, 3. The Jarque-Bera
statistic® also rejects a normal distribution. We also performed the Q-Q
plot test, which compares the real distribution of the sample with a normal
distribution. The Q-Q plots are shown in Figure 4.3. The fat tails in real
distributions deviate from normal distributions, which are represented by the
dotted straight lines.

Next, we study the cyclical patterns in electricity prices. The intra-day
hourly price patterns are illustrated in Figure 4.4, with a sample of one-
week hourly prices of APX (from December 16, 2002 to December 22, 2002).
During each day, prices climb from about 8:00 am, to their first peak at about
11:00 am. After the second peak period about 6:00 p.m., the prices decrease
until the next morning.

Figure 4.4 also shows that prices on weekdays are higher than on week-
ends. The day of a week price patterns can also be inspected by plotting the
autocorrelations of returns in daily average prices®. As shown in Figure 4.5,
the autocorrelations of price returns do not fade away. This is quite different
from most financial products. The salient 7-day cycle in autocorrelations
suggests the day of a week price patterns.

We show the annual seasonalities in Figure 4.6 by plotting the monthly
average prices in the sample period. Generally, prices are higher in peak
months, especially in winter and sometimes in summer, and are lower in
shoulder months.

[ o g ® —3)2 : :

° Jarque-Bera Statistic is calculated as %(S2 + @), where S is the skewness, K is
the kurtosis and N is the number of observations.

6The autocorrelation function of the price return series is given by

Zi\;k+1(rt —7)
Zivzl(rt —7)?

where 7; is the electricity price return, k is the number of time lags, N is the number of
observations and 7 is the average of ry.

acf(r, k) =
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From Figure 4.2, we can observe by visual inspection that electricity
prices tend to revert to a mean level. In order to examine mean reversion
in electricity prices, we perform an Augmented Dick-Fuller (ADF) test with
5 time lags with the price data. The ADF(5) test results reported in Table
4.2 rejects a unit root, which implies a random walk. In other word, the
autoregressive coefficient in an AR(1) model will be significantly different
from zero and mean reversion applies.
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Figure 4.2: Daily average prices in APX and EEX
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APX EEX
In(P) In(P/By) | In(B) In(B/Pi1)
Mean 3.40 0.00 3.19 0.00
Median 3.37 -0.03 3.23 -0.04
Minimum 0.72 -2.53 1.14 -1.96
Maximum 6.49 3.54 5.48 2.37
Standard deviation | 0.50 0.46 0.38 0.35
Skewness 1.08 0.78 -0.32 0.86
Kurtosis 5.17 6.09 3.49 4.38
Jarque-Bera * 571.05 730.07 40.31 295.42

*The Jarque-Bera Statistic of a normal distribution is zero. The Jarque-Bera
Statistic follows a Chi-squared distribution with 2 degrees freedom. At 5% confi-
dence level, the critical value to reject the null hypothesis of a normal distribution
is 5.991.

Table 4.1: Statistics of electricity daily average prices
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Figure 4.3: Q-Q plots of the logarithm of electricity daily average prices
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Figure 4.6: Monthly average prices

ADF(5) test statistic | ADF(5) test critical values*
APX -9.5863 1% -3.4382
EEX -7.4235 5% -2.8642
10% -2.5682

*MacKinnon critical values for rejection of hypothesis of a unit root. The null
hypothesis of a unit root is rejected in favour of the stationary alternative, if the
test statistic is more negative than the critical value.

Table 4.2: ADF(5) test of electricity daily average prices

In another test for mean reversion, we follow the method used by [Pin99],
plotting the variance ratios against increasing time of lags, k. The ratio is
calculated as
_ 1Var(Pyy — P)
"k Var(Py1_B)

If price follows a random walk, i.e., is not stationary, the variance of k-
period differences should grow linearly with k£ and should approach 1 as k

Ry

(4.30)
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increases. On the other hand, if price follows a stationary (mean reverting)
process, the variance of k-period differences will approach an upper limit as k&
grows. So this ratio will fall to zero as k increases. The variance ratios of the
daily average price in APX and EEX in Figure 4.7, decrease with increasing
k toward zero. Hence, prices are mean reverting.
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Figure 4.7: Variance ratios of electricity prices

4.4.2 Model Specification

In order to model seasonalities, we follow the spirit in [L.S02] to decompose
the logarithm of the observed spot price P; into two parts: the stochastic
component, X;, and the seasonal deterministic component, S;.

Further, we decompose S; into an annual pattern F; and a weekly pattern
W.
Sy =F+W, (4.32)

where
F, = Aot + Ay sin(wit + @) + Az sin(wat + ¢5) (4.33)
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and wy; = %,wg = %, Ao, A1, Ag, ¢y, ¢, are constant parameters, and Ay
represents the time trend, A; sin(wit+ ¢,) and A, sin(wst + ¢,) represent the

annual and semi-annual seasonal factors, respectively.

The weekly seasonality W; is given by

7
Wy = vxDPy (4.34)
k=1

where 7, , are the dummy variables which take value 1 when ¢ = &, and 0
otherwise. DPj is the average deviation of the price of a particular day in a
week from the weekly average prices.

We estimate the parameters with the data ranging from January 1, 2002
to November 30, 2004. The last month of 2004 is left for an out-of-sample
test. The estimated seasonality parameters are reported in Table 4.3. As
expected, the coefficients for weekend days in both markets are lower than
coefficients for weekdays. It may seem strange that all weekly and annual
parameters are negative. This is due to the simultaneous estimation of all
seasonality parameters. The negative values are reasonable in order to correct
the overshooting of the trend parameter Ay. This is affirmed by the good
fitness in the curves in APX as shown in Figure 4.8. Results from EEX data
are much similar, although they are not reported here.

From equation (4.31) and (4.32), we have

X, = In(B) - S = n(P,) — F, - W, (4.35)

Substitute the estimated seasonality parameters in Table 4.3 into equation
(4.33)-(4.35), we obtain the deseasonalized logarithms of the daily average
prices X;. This series is to be used to calibrate a stochastic process model.
The curve in the bottom panel of Figure 4.8 gives the trajectory of X;.
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APX EEX

Ap 1.26E4+00 2.52E+400
A -0.1496 -0.0661
o} -0.3068 -0.8256
A, -0.0417 0.0112
o)) -0.2960 -0.0824
DP, -0.1376 -0.4314
DP, -0.1370 -0.4405
DP4 -0.1241 -0.4351
DP, -0.1373 -0.4336
DPsy -0.1617 -0.4280
DPg -0.1897 -0.4596
DP, -0.1983 -0.4627
R? 0.6629 0.7743
Standard Error 0.2491 0.1543

F value 52.9854 414.2670

Table 4.3: Estimated seasonality parameters
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Figure 4.8: Deseasonalizing the log prices: APX
The first model we choose to calibrate is the MRJD model which is spec-
ified in equation (4.27). Following [CS00], we use the 3-0 method to identify
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jumps. That is, if the deviation of one price from the unconditional mean
is greater than 3 times of the unconditional standard deviation, then this
price is identified as a jump. The filtered jumps series are used to estimate
the Poisson process and the remaining series are used to estimate the mean
reverting diffusion process. The MLE method is used for parameter estima-
tions.

The estimated parameters with data ranging from January 1, 2002 to
November 30, 2004 are reported in Table 4.4. Figure 4.9 shows how the
jumps are filtered out from the APX log prices. The middle panel of Figure
4.9 plots the jump-filtered remaining process. The bottom panel of Figure
4.9 gives the filtered jump series. Results from EEX data are much similar,
except that less jumps are found there.

The second model we choose to calibrate is the two-state regime switching
model. We define three types of regime switching models as variants to the
classical Hamilton models. The first type is a mixture distribution model, in
which we assume the log prices in both regimes follow a normal distribution.
The second type is called De Jong-Huisman model [DH02], which assumes
the log prices follow a mean reverting process in the normal regime and a
normal distribution in the spike regime. The third type is the Ethier-Mount
model [EM98], in which log prices in both regimes follow a mean reverting
process.

Let X r, denote the underlying log price at time ¢. Define the regime
index R; = 1,2. When R, = 1, the price is in the normal regime. When
R; = 2, the price is in the spike regime. The two-regime switching models
are mathematically described as

Xt,Rt = Xt,l or Xt,2 (4-36)

where the transition matrix governing the switching between regime 1 and 2
is given by equqgtion (4.29).

The processes for the three types of regime switching models are given
by
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APX EEX

k  0.6615 (0.0227) 0.6609 (0.0198)
m  3.4554 (0.0250)  3.4540 (0.0095)
o 0.5606 (0.0079) 0.4478 (0.0058)
A 0.0203 0.0091

po 11314 -0.2985

p*  0.6818 0.3388

Table 4.4: Estimated parameters for MRJD model (number in the parenthesis
is the standard errors of the estimation)
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Figure 4.9: Jump filtering: APX
Mixture distribution model:
X1 = mi+eg
X2 = Mgy + € (437)

where ¢; ~ N(0,02),i = 1,2, m; and my are the mean log price levels in the
normal and spike regimes, respectively, and m; < ms.
De Jong-Huisman model:
dXt’l = kl (m1 — Xt’l)dt + Ulet,l
X2 = Mgy + € (438)
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where m; is the mean log price level in the normal regime, o, is the volatility
of log prices, Z; ; is a standard Brownian motion, my is the mean of log price
level in the spike regime, €5 ~ N(0,03), and m; < mo.

Ethier-Mount model:

dXt,l - ]{71 (ml - Xml)dt + Ulet,l
dXi2 = ka(me — Xy2)dl + 02dZ; o (4.39)

where m; and msy are the mean log price levels in the normal and spike
regimes, respectively, k; and ko are the mean mean reversion rates in the
normal and spike regimes, respectively, o1 and o4 are volatility of log prices in
the normal and spike regimes, respectively, Z,; and Z; ; are two independent
Brownian motions, and m; < ms.

We estimate the regime switching models by an Expectation Maximiza-
tion (EM) algorithm. The EM method uses an iterative procedure that
consists of two steps. In the first step, we assume an initial set of para-
meter values, 90, and calculate the posterior estimates of the probability
P(R; = i|X, Xs, ..,XT,éo) that the process is in regime i at time ¢t with
knowledge of the complete data set X, X»,.., X7. The expected value of the
log-likelihood can thus be calculated via the likelihood function. In the sec-
ond step, we maximize the expected likelihood to obtain a new set of model

parameters, 91 With the new vector @1 we start the next round of the al-
gorithm to recalculate the expected Value of the the log-hkehhood and so
on. This EM algorithm 1terat1vely improves an initial estimate 6" by con-
structing new estimates 0 +1. When 0" converges, the maximum likelihood

estimates of the parameters are obtained. Details of the EM estimation can
be found in [DLR77] and [Ham94].

In order to avoid a local maximum of the likelihood function, we used

several different random initial estimates, @O. The estimates are stable with
the different initial settings. The EM estimated parameters with data from
January 1, 2002 to November 30, 2004 are reported in Table 4.5.
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APX
Mixture distribution De Jong-Huisman Ethier-Mount
P11 0.9730 0.9849 0.9803
Doo 0.6311 0.4785 0.3683
k1 0.7298 0.4913
my 3.4045 3.4162 3.4312
o1 0.3215 0.2987 0.4375
k2 1.8442
Mo 4.5185 4.9547 4.9644
(P 0.3489 0.3210 0.2995
EEX
Mixture distribution De Jong-Huisman Ethier-Mount
P11 0.9652 0.9634 0.9604
P22 0.7534 0.6732 0.4206
kr 0.8452 1.013
m1 3.1015 3.2354 3.2746
o1 0.2684 0.2580 0.3157
ko 1.2584
Mo 3.9818 4.1546 4.2432
02 0.2566 0.2498 0.2012

Table 4.5: Estimated parameters for regime switching models

4.4.3 Performance Comparison

To compare the in-sample goodness-of-fit of the MRJD and regime switching
models, we use a simulation-based approach. Based on the model calibra-
tion results in the previous subsection, we simulate 5000 price paths for the
sample period with each of the models. We then compare the trajectories
and statistics of the simulated prices with the real historical prices. By
visual inspection, the simulated price paths from both MRJD and regime
switching models resemble the real price curve quite well. The statistics of
the simulated prices for APX data are reported in Table 4.6, together with
historical data. We find that the statistics from the simulations of regime
switching models are generally closer to historical statistics than those of
MRJD model. Especially, the skewness and kurtosis in log prices are better
captured by regime switching models. Finally, the De Jong-Huisman model
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outperforms all other models. These findings are supported by simulations
for EEX market as well, although the EEX results are not reported here.

Historic MRJD Mixture De Jong- Ethier-
data distribu- Huisman  Mount
tion

Jumps NA 33 135 52 43
Mean 3.4031 3.4712 3.4550 3.4624 3.4688
Variance | 0.2489 0.4335 0.2069 0.2313 0.2211
Max 6.4928 6.3441 5.2677 5.6003 5.4562
Min 0.7178 1.1352 2.1238 2.0832 2.0132
Skewness | 1.0898 0.1621 0.7684 0.8067 0.3142
Kurtosis | 5.1438 3.5338 4.1411 4.9605 3.5987

Table 4.6: Statistics of simulated prices”

We perform the out-of-sample test with the data of the last month of
2004. We use each of the calibrated models to generate 5000 forecasted
paths of daily prices for the out-of-sample month. For each generated path,
two performance measures, namely Root Mean Squared Errors (RMSE) and
Mean Absolute Errors (MAE), are calculated by

k
RMSE = Zln (P,) — In(P/)]? (4.40)

k
1
MAE = Ez:: | In(P,) — In(P/) | (4.41)

where £ is the number of observations, F; is the observed daily price in the
forecast period, and P/ is the forecasted daily price.

The average forecast errors for each model are reported in Table 4.7.
We find that the forecast errors of regime switching models are generally
lower than those of MRJD model. After all, the De Jong-Huisman model
outperforms all other models in forecasting the one-month ahead prices.

"Note that the historic price here include only the in-sample data which range
from January 1, 2001 to November 30, 2004, thus the historic statistics in the
second column of Table 4.6 are different from the second column of Table 4.1.
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MRJD Mixture De Jong- Ethier-
distribu- Huisman Mount
tion

RMSE 0.6960 0.5118 0.4621 0.4940
MAE 0.5553 0.4210 0.3850 0.3967
RMSE 0.6354 0.4758 0.4513 0.4921
MAE 0.4869 0.3952 0.3712 0.3824

Table 4.7: Average forecast errors of alternative models

4.5 Concluding Remarks

The electricity supply industry in many countries has transited from a reg-
ulated, monopolistic system to a deregulated and competitive market. The
increasing trading activities in electricity arouse the need for electricity price
modeling.

As a special commodity which is not economically storable, electricity
prices exhibit several uncommon properties. Firstly, electricity prices are
highly persistent to their long-term average level, which is termed as mean
reversion. Secondly, electricity prices have remarkably high and time-varying
volatilities. Thirdly, various seasonal patterns, such as intra-day, day of a
week, and annual cycles, are found in electricity prices. Fourthly, price jumps
occur occasionally in electricity markets. Finally, electricity price behaviors
differ from one region to another.

With the reduced-form approach of electricity price modeling, different
stochastic processes are exploited to reflect the above-mentioned price prop-
erties. We calibrate the two mostly used models — mean reverting jump
diffusion and regime switching models — to the Dutch APX and German
EEX market data. With a simulation-based approach, we compare the in-
sample goodness-of-fit and out-of-sample forecasting accuracy between these
two types of models. We find that the regime switching model, especially
the De Jong-Huisman model gives a better performance.

The spot price modeling forms the foundation of derivatives pricing and
risk management in the electricity markets.

In the following chapters, we will use these models to value energy assets
as exotic derivatives contracts.
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Chapter 5

Volumetric Risks and Power
Plant Value

5.1 Introduction

Under a competitive market environment after the deregulation of electricity
industry, an economically dispatching power plant is conveniently valued by
a real options model, in which the value of the power plant is considered a
string of spark spread call options.

Option-based valuation is able to capture the flexibility of operating a
power plant. With an optimal operational schedule, revenues form positive
spark spread values can be retained and losses from negative spark spread
values can be avoided.

Electricity and fuels prices are key drivers of power plant values. We use
two correlated stochastic processes to model these two prices and calibrate
models to the historical data in the Dutch APX market.

Considering the complexity of the electricity industry, there are a variety
of additional factors which can affect the realization of a power plant value.
We classify these factors as volumetric risks, which may occur whenever a
power plant encounters an unplanned outage, a sudden increase in electricity
consumption, or a transmission failure.

Volumetric risks are related to the real-time nature in both production
and consumption of electricity. Since electricity is hardly storable and de-
mand of electricity is not elastic on price, volumetric matching will be a
critical task for electricity producers and marketers. Volumetric risks are not

89
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caused by market price movements, but rather by physical problems. But
the converse statement is true: Market price movements in power markets
can all be tracked back to volumetric risks.

We classify volumetric risks into two categories — risks from the supply
side and from the demand side. Risks from the supply side are mainly posed
by the physical constraints in operating a power plant. Risks from the de-
mand side come from the uncertainty in customer load.

Volumetric risks have a negative impact on the profit and consequently
on the value of a power plant. This impact has been addressed in the litera-
ture of energy asset valuation with an option-based method. Examples can
be found in [DJSO01], [GZ00], [TB02] and [DO03]. However, in all above arti-
cles, the model only incorporates a few of physical constraints such as min-
imum up/down time, startup/shut-down costs, ramp-up time and varying
heat rates. Furthermore, these constraints are treated in a highly simplified
manner in their modeling.

This chapter follows the approaches used in [GZ00] and [TB02] by using
backward dynamic programming based on Monte Carlo simulations. The
contributions of this chapter to the literature are twofold. Firstly, we use
regime switching models for electricity spot prices, which is capable of cap-
turing the jumps in electricity prices. Secondly, we empirically assess the
impacts of different volumetric risk factors on the power plant value, from
both the supply side and the demand side.

This chapter is organized as follows. Section 5.2 discusses on different
volumetric risk factors and how they may affect power plant values. In
Section 5.3, we provide a general valuation framework using real options
approach. In Section 5.4, we calibrate a regime switching model to electricity
prices, a GBM model to gas prices, and a GBM model to customer load data.
The changes in power plant value under different simulation scenarios are
reported. Finally, Section 5.5 gives some concluding remarks.

5.2 Volumetric Risks and Their Impacts on
Power Plant Values
In this section, we discuss various volumetric risk factor from both the supply

side and the demand side. The impacts of these risk factors on power plant
value are also analyzed in a qualitative way.
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5.2.1 Impact of Supply-Side Risks and Constraints

On the supply side, a power plant is always subject to certain physical con-
straints which limit the production rate and/or operational flexibility. The
final output level and power plant value are affected as well. These physical
constraints include:

e Startup and shutdown costs. Startup and shutdown costs are used in
calculating the cost of bringing a unit on or off line. There are two
components for a start: a straight cost component and a fuel cost.
These two may be dependent on whether the start is hot or cold.

e Minimum up/down time. Most generation units cannot be turned on
and off as frequently as we expect. Every flexible unit may need to
remain online for several hours before they can be shut down. Similarly,
most units cannot be restarted immediately if the current status is off.

e Ramp rate. A generation unit has its maximum and minimum capacity
output. The maximum capacity and minimum capacity also permit in-
corporation of environmental and/or season-dependent changes. Typ-
ically, a generation unit needs a certain length of time to move from
zero MW to its full capacity. The ramp rate is a measure of how fast a
generator can move up or down from its current state. Accordingly, we
distinguish ramp-up rate and ramp-down rate. Ramp rate has a unit
of MW /hour.

e Varying heat rate. The heat rate of a generation unit is not constant.
As the output increases, the heat rate increases as well. Generally,
a generating unit is most efficient when it is operated at or near its
maximum capacity. Heat points represent the MW level used to define
a heat rate.

e Forced outage. Generation units sometimes break down unexpectedly
due to technical problems. Units lower in the commitment order pick
up the swing duty shifted down by outages of base-load units. A forced
outage rate represents the percentage of forced down hours to the whole
number of hours in a year. For instance, a single forced outage rate
of 10% means that the unit has a 90% probability of being available
during any course of time. Forced outages are actually random events.
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We only know they will happen with a certain probability but we do
not know when exactly they will happen.

e Maintenance rate. Certain period of time is needed for the maintenance
of a generation unit. Similar to a forced outage rate, a maintenance rate
represents the percentage of maintenance hours to the whole number
of hours in a year.

e Spinning reserve. A technical approach to maintain electricity supply
security is to reserve some capacity of generation. The term of spinning
reserve is used to describe the total amount of power available from all
units "spinning" in the system minus the load that is supplied and
losses that take place inevitably along the lines. Spinning reserves are
allocated so that they obey certain rules. Normally, reserves should
represent a given percentage of forecast peak demand, generally 10-
20%; or it must be capable of making up the loss of the most heavily
loaded unit in a given period of time. Another way of calculating the
reserve requirement is to define it as a quantile of outage-related loss
distribution: for instance, choose the reserve in such a way that the
probability of not having sufficient generation is smaller than 0.01.

e Emission constraint. Environmental regulations require a generation
unit to purchase emission right or invest in pollutant scrubbers. As
emission right trading has been effective in Europe, the cost increase
in producing electricity due to COy prices will affect the output level
and power plant value.

The above-listed characteristics have an impact on the power plant value
in two different ways. The startup/shutdown cost, varying heat rate and
emission constraint increase the strike price of the spark spread call options.
For instance, with a higher heat rate, an additional cost is imposed to the
exercising of the spark spread. Denote the change of heat rate as AK, then
the additional cost if AKSg. If we write D = AK S, then the payoff of the
spark spread option at maturity time 7" is given by

C(Su(T), Se(T), K, T) = max(Sp(T) — KSa(T) — D,0).  (5.1)

where the strike price of the call option increases from K Sg(T) to KSq(T)+
D.
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An increase in strike price implies a decrease in the call spark spread
option. The power plant value will decrease as well.

The minimum up/down time, ramp rate, forced outage, maintenance and
spinning reserve add a "swing" component to the spark spread options. These
constraints limit the output rate or disable the production completely. In this
way, the volume of the spark spread options at certain time, and consequently
the value of the power plant, are decreased. For instance, at certain hours, a
power plant with a maximum capacity of 100 MW may only have a output
level of 80 MW due to spinning reserve requirement or ramping constraints.
At some hours, the power plant has to be shut down for planned maintenance
or by unexpected outage, then the realized volume of spark spread options
drops zero.

5.2.2 Impact of Demand-Side Risk

An independent generator is not exposed to volumetric risk from the demand
side. However, deregulation up to now has not created many independent
generator. Major players in the markets are still those incumbents who
own generating assets and service customer loads at the same time. We
simplify the problem by studying a load-serving power plant. When taking
customer load contracts into account, the power plant value is then the value
of a portfolio, which consists of the embedded spark spread options and the
aggregated customer load contract.

When valuing a load-servicing power plant, an additional complexity is
the interaction among the generator, the spot power market and customer
load. With a customer load constraint, the power plant does not only play
against the spot market. The above-all rule is to meet the customer load at
any time.

If the spot power price is greater than the power plant’s dispatch cost,
the power plant will run at its maximum capacity. In the running status, we
still need to distinguish two scenarios. If this maximum capacity is greater
than the customer load, the generator will sell the surplus output in the
spot market. If the maximum capacity is lower than the customer load, the
generator will buy the shortage electricity from the spot market.

In contrast, if the spot power price is lower than the power plant’s dispatch
cost, the power plant will be stop running and buy all the power from the
spot market to satisfy the customer load. Note that we assume no impact
on the spot price by individual buying and selling in the market.
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Customer load is often assumed to follow a conventional pattern. The
aggregated long-term load is likely to be increasing slowly with a time trend,
due to the economic and population factors. However, the short-term cus-
tomer load fluctuations, which are related to weather conditions, are difficult
to predict.

The uncertainty in customer load affects the cash flows and as well values
of a load-serving power plant. The impact is more complicated than the
supply side physical constraints. To what extent the demand-side volumetric
risk may impact the power plant value depends on the tariff system for end
users. If the selling price of electricity to end customer is completely real-
time, i.e., equals the spot market price, the uncertainty in customer load is
then fully absorbed by the spot market and the related volumetric risk has
no impact on the power plant value.

However, such a real-time tariff system is not applicable to end customers.
Typically, customer load contracts specify a fixed forward price. These con-
tracts are actually swing contracts. The power plant is exposed to the un-
certain in customer loads.

One important property of customer load is its co-movement with prices.
Note that the customer load always has a positive correlation with electricity
price. This implies that the demand-side risk always works jointly with
electricity prices. This multiplying effect of customer load uncertainty may
pose remarkable risks on the power plant value'.

5.3 Real Options Valuation

In order to price the spark spread, we model the electricity and the gas
prices separately. Based on the conclusions in Chapter 4, we choose a regime
switching model for electricity prices and a lognormal mean reverting model
for gas prices. For the stochastic customer load, we use a lognormal mean
reverting model as well. The Monte Carlo simulation of correlated processes
is introduced.

'Tn the California power crisis in the summer of 2000, the volumetric risks coming from
the demand side contributed to the bankruptcy of the Pacific Gas & Electric company.
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5.3.1 Price and Load Models

Following the conclusions in Chapter 4, we choose to use a two-state regime
switching model for electricity prices. The normal regime is given by a Geo-
metric O-U process and the spike regime is governed by a GBM process.
Furthermore, in order to reflect seasonal patterns in prices, all the parame-
ters in these process are time-varying.

Since more than one variables are used here, we will rewrite the regime
switching models from Chapter 4. The electricity price Sg is given by

Sp = SLor 5%. (5.2)

where S}, represents electricity prices in a normal price regime and S% rep-
resents electricity prices in a jump regime. Assuming the price in the normal
regime follows a mean reverting diffusion model and the price in the jump
regime follows a lognormal distribution, the two regimes are then described
by the following two processes:

d(Sy) = kp(t)(uL(t) —InSL)SEdt 4+ o4,(t) SEAW (5.3)
d(S%) = pp(t)Shdt + og(t)SEdWE (5.4)

where kg(t) is the mean reverting rate of the logarithm of electricity price
in the normal regime, % (t) is the mean log price in regime i, i = 1,2, o’,(t)
is the standard deviation of electricity prices in regime 4, i = 1,2, dW} and
dW?2 are the increments of two independent Wiener processes.

The transition possibilities from one regime to another is controlled by a
Markovian matrix given by equation (4.29), i.e.,

p— (pll P12 ) _ ( P11 1 —pn ) (5.5)
P21 D22 1 —pao P22
where p;; represent the probability of switching from regime 7 at time ¢ to
regime j at time t +1,¢,7 =1, 2.

Gas prices, S¢, are also mean reverting, but jumps are not often observed.
Thus, we use a lognormal mean reverting model for gas prices. The process
is given by

dSqg = Kg<uG<t) —In S(;)SGdt -+ Ug(t)SGdWG (56)

where k¢ (t) is the mean reverting rate of the logarithm of gas price, ()
is the mean log gas price, o(t) is the standard deviation of log gas prices,
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dWg is the increment of a standard Brownian which is correlated with dWW}
by
AW EdWe = pg gdt. (5.7)

When simulating a load-servicing power plant, we need a model for cus-
tomer load. In practice, the prediction of a customer load is easier to be done
than forecasting electricity prices, because customer load is stabler and its
cyclical patterns are closely related the weather. We use a Geometric O-U
model for customer load. The process is given by?

dL = (u,(t) —In L) + ordWy, (5.8)

where i, (t) is the normal load level at time ¢, which is obtained from his-
torical load profiles, oy, is the standard deviation of logarithm of customer
load, dW7, is the increment of a standard Brownian which is correlated with
dWi by?

dWgdWp, = pr pdt. (5.9)

5.3.2 Spark Spread and Power Plant Value

To recall some contents from earlier chapters, the holder of a European spark
spread call option written on fuel G at a fixed heat rate K has the right but
not the obligation to pay Ky times the unit price of fuel G at the option’s
maturity time 7' and receive the price of 1 unit of electricity. Let SL and
SZ be the spot prices of electricity and fuel at time T, respectively. Denote
the value of the option at time ¢ by C(S%, SL, Ky, t), then we have

C(SE,SL Ky, T) = max(SE — Ky S%,0) (5.10)

Consider a power plant with a lifetime of 7', the value of the power plant
V' is then given by

V- / "ot (5.11)

Following [GZ00] and [TB02], we choose to use a dynamic programing
method which is based on Monte Carlo simulations. Under the electricity

2To simplify the estimation of p E.G» We assume gas prices are only correlated with the
electricity prices in the normal regime.

3To simplify the estimation of p ,E, We assume customer loads are only correlated with
the electricity prices in the normal regime.
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and gas price (and customer) paths generated by simulations, the optimal
operational schedule for a generation unit is solved from the terminal condi-
tion backward until to time zero*. The final power plant value is then the
average of all the power plant values realized with each optimal schedule
under each simulated paths.

In the next subsection, we will introduce the Monte Carlo simulation
method for correlated processes.

5.3.3 Monte Carlo Simulation

Monte Carlo simulations generate random paths of price series in the fore-
casting time period. If electricity prices are given by its normal regime,
the spark spread value is then driven by the following two mean reverting
lognormal processes.

dSqa = Iig(pJG(t) —1In S(;)Sgdt + Ug<t)SgdWé (513)
dWgdWg = ppadt (5.14)

In this subsection, we show the Monte Carlo simulations with these two
correlated mean reverting processes. The procedure is the same if the elec-
tricity price is given by its spike regime. The price-correlated customer load
can be so simulated as well.

Following [Gem05], we construct two correlated Brownian motions. Using
Cholesky decomposition method, these two Brownian motions can be written
as

Wé = ppeWi+4/1 - P%;,GW; (5.15)

where W, is a Brownian motion independent of W}.

By dividing the time to maturity [0, 7] into n subintervals, the changes
in Sg and Si over the first interval [0,7"/n| are defined by the draws of the
Brownian increments:

Hy — WE(O+%)—WE(O) (5.16)
He — WG(O+%)—WG(O) (5.17)

4The total number of possible spark spread options depends on the technical assump-
tions we make for the power plant. In this chapter, we assume the operator of the peak-load
power plant makes its decision at each hour.
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The discretization of the electricity and gas price processes are

Sp(1) = ke(up(-) ~ W Sp(0)Se(0) +op(-)Se(0)He (519
So(=) = role() — 0 Sa(0)Se(0) + 06(1)Se(O)Ha (519)

The quantity of Hg is normally distributed with mean 0 and variance T'/n.
In order to make a random pair of Sg and Sg, we first create a random draw
of Hp following this normal distribution. Then over the same time interval,
we obtain Hg by building another random draw which is independent of W7},
and has the same distribution: mean 0 and variance 7'/n. Then we have

He = ppolp+ /1 — p% cH; (5.20)

Constructing M pairs of trajectories for Sg and Sg in this manner, we
can obtain the corresponding terminal values of Sg(7T") and S¢(T). Figure
5.3 and Figure 5.4 show one path of the simulated electricity and gas price,
respectively. As described in subsection 5.3.2, under each pair of generated
price paths, dynamic programming gives an optimal operational schedule and
realizes a power plant value u;, 2 = 1,2, ..., M. The Monte Carlo simulated
power plant value VM is then equal to

M
yme — L > w (5.21)
M i=1 ) .

5.4 Empirical Results

In this section, we calibrate the models specified in Section 5.2 and use sim-
ulations to test the impacts of volumetric risk factors on power plant values.
We run the simulations under various scenarios, in which different risk factors
are introduced, and compare the changes in power plant values.

5.4.1 Data and Model Calibration

We assume a virtual gas-fired peak power plant operated in the Dutch mar-
kets with a permanent capacity of 100 MW. The average heat rate of 7500
Btu/KWh. The power plant is valued on February 10, 2006, and is supposed
to operate from January 1 to December 31, 2007.
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Using data sample from July 1, 2003 to February 10, 2006, we calibrate
the price models of electricity to the APX price data, the gas price model to
TTF 51.7 gas prices, and load model to a typical historical load profile.

We do not conceive CO, trading as a structural change in the markets. As
an alternative, we view the emission cost as a constraint which is explicitly
taken into account in the model.

In order to model the seasonal patterns in both commodities, we divide
the total data samples into four seasons, i.e., Spring (from March to May),
Summer (from June to August), Fall (from September to November), and
Winter (from December to February of next year). We further divide the
data in each season into two sections, i.e., weekdays and weekends. We then
estimate the parameters for each subsection accordingly.

We do not assume the weekday /weekend patterns for gas prices, because
they are not obviously observed in the markets. Totally, we obtain 4 x 2 = 8
sets of parameters for electricity prices and 4 sets of parameters for gas prices.
The correlations between the two commodities’ prices are also estimated in
each subsection sample. The estimated parameters are offered in Table 5.1.

Panel 1: Parameters for weekdays

Electricity price model

Season  ul Ua KL ok o2 P11 P22
Spring 3.4649 3.8557 0.3241 0.1219 0.2204 0.7356 0.2549
Summer 3.3921 5.1945 0.6281 0.3166 1.0270 0.9681 0.6445

Fall 3.1451 4.0826 0.8984 0.2515 0.3450 0.8542 0.5663
Winter  3.4678 3.8557 0.5799 0.2724 0.4907 0.9783 0.8399
Gas price model Price correlation
Season KG Ha lofe! Season PE.C

Spring 0.2476 2.3856 0.0338 Spring 0.1743

Summer 0.0099 2.3444 0.0341 Summer 0.2231

Fall 0.1371 2.5486 0.0553 Fall 0.1739

Winter  0.0492 2.5362 0.0392 Winter  0.4431
Panel 2: Parameters for weekends

Electricity price model

Season  uk W K ok o5 P11 P22
Spring 2.8923 3.4393 0.1859 0.2154 0.1420 0.2931 0.7387
Summer 3.2560 3.4209 0.6655 0.3449 0.0675 0.2923 0.1971
Fall 3.2458 3.6708 0.8579 0.1425 0.2898 0.2685 0.7665
Winter  3.3052 3.5461 0.7439 0.4420 0.1115 0.3651 0.6267
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Gas price model Price correlation
Season kG e lofe! Season PE.G
Spring 0.2476 2.3856 0.0338 Spring 0.1825
Summer 0.0099 2.3444 0.0341 Summer 0.0725
Fall 0.1371 2.5486 0.0553 Fall 0.1123
Winter  0.0492 2.5362 0.0392 Winter  0.2573

Table 5.1: Parameters estimation results (Note that all volatilities in this table
are on a daily basis)

5.4.2 Electricity Hourly Price Index

Unlike gas prices, the electricity prices are not flat during one day. The day-
ahead prices in APX are quoted on a hourly basis. The peak-load power
plant in our model is assumed that the dispatch decisions can be made in
every hour. Thus, we need a method to translate the simulated daily prices
into hourly prices for dispatch decision-making and cash flow calculation.

We construct a multiplicative hourly index system based on historical
hourly prices from July 1, 2003 to February 10, 2006. The estimated hourly
price index for each hour is just the average weight of the price of that hour
in the daily average price. In order to represent price patterns, we estimate
4 x 2 = 8 sets of hourly price indexes. For example, the hourly indexes for
the weekdays in spring are estimated by

- 1 &
Hi,t = E Z ¢spring77weekdaypi,t (522)
t=1

where H;, is the estimated price index for the i-th hour (i = 1,2, ...,24) on
date ¢, m is the number of observations, F;; is the observed hourly price
at the i-th hour (i = 1,2,...,24) at date t, ¢y.in, a0 1yeepaq, are dummy
variables, and ¢,.;,, = 1 when date ¢ is in spring and ¢,.;,,, = 0 otherwise,
Nweekday = 1 When date t is a weekday and 1,,.cpq44, = 0 Otherwise.

The hourly price indexes are used as multipliers to the average daily price,
reflecting the intra-day price patterns. We also find that the indexes differs
between weekdays and weekend, and vary across different seasons. These
properties of hourly price patterns can be more easily observed in Figure
5.1 and Figure 5.2. We find that the two peaks during a day are more
pronounced in winter and summer. These hours are important for peak-load
power plants.
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Figure 5.1: Hourly price indexes in weekdays

With the hourly multiplicative indexes for each hour, we can always work
with daily average prices. In case we need to forecast the hourly prices for
dispatch planning, we can convert the daily average prices into hourly prices
by multiplying the correspondent multiplier for each hour, i.e.,

Piy=Hi by (5.23)

where F; is the daily average price.
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Figure 5.2: Hourly price indexes in weekend

5.4.3 Simulations With Supply-Side Risk Factors

Based on the calibrated electricity and gas price models, we use a Monte
Carlo simulation engine, Planning and Risk (PAR) to generate possible price
paths and power plant generation strategies [Glo04]. The generated daily
average electricity prices are in converted into hourly prices by multiplying
the hourly price indexes. The hourly prices of gas are assumed to be flat
during each day. The net present values (NPVs) of the power plant are
calculated by discounting the future cash flows with a risk-adjusted discount
rate. We use an annual discount rate of 10%° and discount the future cash
flows on a monthly basis.

We perform the simulations under various scenarios. For the base case
scenario, we assume no physical constraint for the power plant, and we use
the average heat rate. Next, we construct six other scenarios by adding

°This rate is considered exogenous here. A Weighted Average Cost of Capital (WACC)
model is often used to decide this rate.
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one supply-side volumetric risk factor each time, successively. Under each
scenario, we run Monte Carlo simulations with N = 350 iterations® to obtain
the value of the power plant. Specifically, these six scenarios are

1. +Minimum up time of 8 hours and minimum down time of 2 hours;
2. +Ramp rate of 30 MW /hour from capacity of 40 MW to 100 MW;

3. +Varying heat rate defined by heat points 40, 60, 80 MW and heat
rates 8500, 7500, 6500 Btu/KWh, respectively;

4. +Forced outage rate of 0.05 and maintenance rate of 0.04;

5. +Spinning reserve rate of 0.1 and the spinning reserve provider receives
a revenue which is 20% of the spot electricity price;

6. +Startup/shutdown cost of 1000 Euro per start(shut) and emission cost
of CO; 15 Euro/ton with an emission rate of 350g/KWh.

The above constrains are so chosen that they can reflect realistic power
plants. Simulations based on these constraints should demonstrate the major
effects of the risk factors.

The dispatch of the power plant is determined by a dynamic programing
method. This method requires that at each time point the dispatch action
should maximize the current cash flow plus the expected cash flow for the
remaining future time.

We introduce the following notations:

e ¢: time index (t =0,1,2,...,7);

e 1, state variable with its sign indicating whether the plant is started
up (+) or shut down (-) and its magnitude indicating the length of the
time being in this mode;

e u;: binary decision variable equals 1 when the decision is to run and 0
when the decision is to shut down;

e ¢;: decision variable denoting the generating capacity at time ¢;

6The PAR simulation engine uses an antithetic sampling technique. Qur experiements
show that 350 paths suffices to make the power plant value to converge.
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HR;: effective heat rate at time ¢;
C,: outage cost at time ¢;

Cy,+: maintenance cost at time ¢;
Cyt: start-up cost at time ¢;

Cay: shut-down cost at time ¢;

C.: emission cost at time ¢;

The six scenarios are then translated into:

1.

1,if1 <z <8
Uy = O,If—2<$t<1
0 or 1, otherwise

xp1— 1, ifx g € (=2,-1), or, z;_1 € (—o0,—2] and uy = 0;
1,if 2, 1 € (—o00,—2] and u; = 1;

1+ 1, if 21 € [8,400), or, z; 1 € (8,400) and u, = 1;

1, if 2,1 € (8,+00) and u; =0

Ty =

.40 - sign(xy) <| g — qi—1 |< 100 - sign(xy)

1,if 0 < x4

where sign(z,) = 0, otherwise.

6500 x 228 if g, > 80;
HR, = { 7500 x &2 1if 60 < ¢, < 80;

1000 7

8500 x &2LL if 40 < ¢, < 60;

+o00, if out; = 1, where Pr(out = 1) = 0.05;
Oot - .
0, otherwise.

+o00, if maintain, = 1, where Pr(maintain = 1) = 0.04;
Omt - .
0, otherwise.

(1-0.2)8%, if 2, > 0;

- Cre = { 0, otherwise.
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6. C . — 1000, if z; > 0 and z;_1 <0 ;
- w0, otherwise.

Cap =

)

1000, if z; < 0 and x;_; > 0 ;
0, otherwise.

15350 : :
C., = oo 4t i T > 05
© 0, otherwise.

Denote the cash flow obtained at time ¢ as f;, then

ft(xb Ut, anjy SE) = an;% - HRtStG - Co,t - Cm,t - Cu,t - Cd,t - Ce,t

Simulated electricity average daily price
350

300 -

250

200 -
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day

Figure 5.3: Simulated electricity prices

105

(5.24)

Denote the power plant value at time ¢ as V;, with r being the constant

discount rate, then

ft(zta U, StE7 StG>

V;f(xtauh‘S’tEaStc) = (1 +T)t

+ H%E:’X Et“/t-‘rl (IL‘t, ata StEa StG)] (525)

where F; denotes the expectation operator given the information at time t.
The Bellman equation is subject to the correspondent constraint scenarios.
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For the i-th pair of simulated price paths for electricity and gas, the Bellman
equation can be solved recursively from the ending time ¢ = T" backward until
= 0. Then V{ is the power plant value for the i-th price paths. Finally, the

N
: _ 1 i
estimated power plant value Vp = + > Vj.
i=1
Simulated gas daily price

24

22

18-

16

Euro/MWh

14

12

0 50 100 150 200 250 300 350
day

Figure 5.4: Simulated gas prices

The simulation-based power plant values under different scenarios are
plotted in Figure 5.5. We find that the power plant values decreases obvi-
ously with the inclusion of physical constraints. Especially, the forced outage
rate, the maintenance rate and spinning reserve have a pronounced effect in
decreasing the power plant value. These findings are consistent with the roles
the supply-side volumetric risk factors play in deciding the spark spread op-
tion values. Either the increases in the strikes or the decreases in the volume
of the spark spread options tends to decrease the option-based power plant
value.
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For each pair of price paths under each scenario, the optimal generation
schedule for the power plant are obtained. This optimal schedule makes little
practical sense, because we have too many pairs of price paths for simulation
but we don not know which pair of path will exactly predict the prices in the
future. For this reason, the optimal schedules are not reported here.

5.4.4 Simulations With Demand-Side Risk Factors

In order to study of the demand-side risk and its impact on the power plant
value, we start with the base case scenario which has been defined in Sub-
section 5.4.3. We use the same calibrated electricity and gas price models,
the same specifications for the power plant as in Subsection 5.4.3.

We add two components for the simulations for the demand-side risk
factors. The first one is the customer load. The second one is the fixed price
specified in customer forward contracts. We use the customer load historical
data from January 1, 2003 to Mar 31, 2006 to estimate the parameters of the
stochastic load model.

We estimate the impact of demand-side risk by comparing the power plant
values under a deterministic and a stochastic customer load. A deterministic
customer load is given by the pattern described by the solid line in Figure 3.
The average load during the modeling period is 51.64 MW.

Then, we rerun the simulations under the base scenario for both a de-
terministic and a stochastic customer load. As shown in Figure 5.5, the
simulated stochastic customer loads exhibit moderate deviations from its
deterministic path, with the 90% confidence levels illustrating the load fluc-
tuations.
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Figure 5.5: Power plant NPVs (in 000 Euro) under various volumetric risk
scenarios

Since an economic dispatching method is applied, by adding the customer
load, the power plant should interact with the spot market by selling the
excess or buying the shortage electricity.

In practice, a load-servicing power plant often uses a fixed price in forward
contracts with its end customers. This forward charge price is based on the
forecast of electricity prices in the future.
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Figure 5.5: Deterministic and stochastic customer load

Since the revenue from servicing end-use customer loads is largely depen-
dent on fixed price in forward contracts, we specify this fixed price to be 20,
36, 50, or 80 Euro/MWHh to build up different simulation scenarios. Among
these four fixed prices, 36 Euro/MWh equals to the average forecasted for-
ward prices from the calibrated model. For each of the four fixed prices for
the forward contracts, we run two parallel simulations — one with a deter-
ministic customer load, one with a stochastic customer load. We find that
the power plant value with a stochastic customer load is always higher than
the value under by altering the forward charge price widely, the absolute
loss in the power plant value a deterministic customer load. The percentage
changes in power plant value are reported in Table 5.2.

The decreases in power plant value in Table 5.2 imply the negative im-
pacts of the customer load uncertainty. The demand-side risks cannot be
fully covered if the fixed price in forward customer contracts is higher than
the average of forecasted electricity forward prices. Obviously, other types of
contracts are needed to hedge the demand-side risk.
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Fixed price in forward contracts NPV changes

(Euro/MWh) (%)
20 -12.83
36 -6.57
50 -2.32
80 -0.16

Table 5.2: NPV changes from a deterministic to a stochastic customer load

5.5 Conclusions

Together with the price uncertainties in electricity and fuels, the volumetric
risks play an important role in determining the value of a power plant.

Volumetric risk factors come from both the supply and demand side in
the electricity industry. These risks decrease the spark spread call option
value by either increasing the strike prices or adding swing components to
the option.

Volumetric risks from the supply side are mainly determined by the phys-
ical constraints in power plants. Our empirical simulation results show that,
some risk factors, such as the forced outage rate, the maintenance rate and
spinning reserve have a pronounced effect in decreasing the power plant value.

Due to the positive correlations between customer load and electricity
prices, the demand-side risk always impacts power plant values jointly with
price risks. This multiplying effect may pose a remarkable damage on power
plant value. Fixed-price forward customer contracts, even if the fixed price
is set higher than the average forecasted forward prices, cannot fully hedge
the demand-side risk.

In the next chapter, we will study the investment opportunities in power
plants.



Chapter 6

Power Plant Value and
Investment Decisions

6.1 Introduction

The electricity supply industry is well-known as a capital-intensive sector.
Currently, the high capital investment in power generation is further mo-
tivated by economic growth in the world, environmental compliance to the
Kyoto Protocol, and competitive strategies of energy companies. According
to the International Energy Agency report, the total investment requirement
for the electricity supply sector worldwide over the period of year 2001-2030
will amount to 10 trillion US dollars, of which 4.5 trillion US dollars will be
spent on power generation. New capacity of 4700 GW of the new genera-
tion (of which 2000 GW will be gas-fired) will cost over 4 trillion US dollars
[IEAO03].

With the introduction of competitive electricity markets, power genera-
tion investment analysis has become an important issue for electricity com-
panies. This is not only because huge amount of capital is involved in power
generation investment projects, but also for the reason that the rights to in-
vest in new generation capacity are usually determined by a licence auction
offered by the government. Power companies must compete for the invest-
ment opportunities by bidding for the licence and a central question for the
companies is what price they should bid for such a licence.

The real options method fits well into the valuation of power plant invest-
ment opportunities. Firstly, as long as the operational flexibility of a power

111
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plant is considered, the power plant can be modelled as real options. While
a base-load power plant can be regarded as a string of forward contracts, a
peak-load power plant can be regarded as a string of call options on spark
spreads. Examples of valuing a peak power plant or generation unit with
real options method include [DJSO01], [GZ00], [TB02], and etc. In Chapter 5,
we demonstrated the valuation of a peak-load power plant with a rich range
of operational characteristics.

Secondly, the opportunities to invest in power plants can also be modeled
and valued as real options. Research along this line falls into the classic real
options valuation framework [DP94] [Tri96], but is recent and rare, due to
the short history of electricity and gas trading. Available literature includes
[NFO4al, [NF04b], [AC05] and [ACO6].

The spark spread is the main value driver of a power plant, but it is not
directly observable in the markets. We can only observe electricity prices and
gas prices in the markets. For power plants with different efficiency (heat
rate), we have different spark spreads. When valuing a power plant value
or power plant investment opportunities, we model normally the electricity
prices and gas prices separately and calculate the forecasted cash flows with
certain heat rates. This approach is used in [DJS01], [TB02], [GZ00] and
Chapter 5 of this thesis.

An alternative approach is to take the spark spread as the underlying.
The spark spread is thought to be "observable" from the markets under a
constant heat rate. If we assume an average efficiency (heat rate) for an
invested power plant, the spark spread series can then be formulated and be
used for power plant valuation. This approach is adapted by [NF04a] and
[NFO4b]. It has two advantages. Firstly, a one-factor model for the spark
spread is as efficient as a two-factor model considering both electricity and
gas prices. Modeling spark spread directly can avoid the estimation and
modeling of the correlation between electricity and gas prices. Secondly, due
to the similar seasonal patterns for electricity and gas prices, the seasonal
effect in spark spread is largely mitigated by the offsetting of seasonalities in
electricity and gas prices. For this reason, we can ignore the seasonal factors
when working with spark spread processes.

[NFO4a] derive the valuation formulas for both base-load and peak-load
power plants. By using the short-term long-term two-factor model [SS00]
for spark spreads, they assume investment decision is only determined by
the long-term equilibrium spark spread. This reduces to a real options prob-
lem with the underlying variable following an Arithmetic Brownian motion
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process. In a classic real options framework, the theoretical thresholds to in-
vest in a base-load power plant, to upgrade a base-load into a peak-load
power plant, can be derived. However, the long-term equilibrium spark
spread prices in the model are not observable in the markets and can only be
estimated from electricity and gas forward prices. Furthermore, in the nu-
merical examples, [NFO4a] estimate the short-term parameters with short-
maturity forward prices, and parameters for the equilibrium spark spread
with the long-maturity forward prices. This manipulation distorts the two-
factor model from [SS00] and leads to the result that the investment is simply
determined by long-maturity forward prices.

This chapter follows the spirit of [NF04a] and [NF04b] by working on
the constructed spark spread prices. However, we take a new approach by
working on the historical spark spreads rather than the forward prices, since
the exchange-quoted gas forward prices have just begun to be available in
the Benelux markets. We carry out an empirical analysis on the spark spread
prices in the Dutch markets. It is seen that the spark spread prices are less
volatile than electricity prices, mean reverting, have less obvious seasonalities
and can have negative prices. These findings motivate us to use a one-factor
mean reverting process for spark spreads.

A major contribution of this chapter is the derivation of closed-form for-
mulas for both base- and peak-load power plant values, given the spark spread
following a one-factor mean reverting model.

A second contribution of this chapter is that we give a complete answer
to the central question asked by power companies about investment licence
valuation. As a general answer, the value of an investment licence is equal
to the value of options embedded in the licence. [NF04a] study the option
to upgrade a base-load into a peak-load power plant but only focuses on
the equilibrium price threshold for upgrading. [NF04b] consider an option
to abandon a power plant and finds that the option to abandon is of trivial
value while the option to wait and operational flexibility of a power plant
are of major importance. [AC06] valuate an option to double a power plant
capacity, but only the base-load power plant is considered. In this chapter,
we compute various investment options, including investment options in a
peak-load power plant, where compound options are involved. We consider
the investment options with various maturities: not only the now-or-never
investment option, but also perpetual options and options with finite-time
maturities. We value one most important option in power plant investment —
the option to expand. We use both the Hull and White tree-building method
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and the Least Squares Monte Carlo (LSMC) method to value these exotic
options. We also estimate the market price of risk and study its impact to
the option values.

The remainder of this chapter is organized as follows. Section 6.2 de-
scribes the one-factor mean reverting model for spark spreads and derives
the formulas for base- and peak-load power plant values. Section 6.3 exam-
ines the historical spark spread series in the Dutch markets and performs the
parameter estimation. Section 6.4 analyzes the sensitivities of power plant
values to the variation of different parameters in the spark spread model. In
Section 6.5, we value the American option to invest in a base- or peak-load
power plant. Section 6.6 values the American option to invest in an expand-
able base- or peak-load power plant. Section 6.7 estimates the market price
of risk for the spark spread with the forward curve on the reporting day and
discusses the impacts on the option value and investment decisions. Section
6.8 concludes this chapter and gives suggestions for some future research
directions.

6.2 Spark Spread Model and Power Plant Value

For simplicity, we assume the energy companies make their investment de-
cisions according to exogenous spark spread prices. As observed in an em-
pirical investigation in the next section, the spark spread prices exhibit a
strong mean reversion and have the possibility of being negative. Hence, we
assume that the spark spread prices follow an Ornstein-Uhlenbeck stochastic
process, which is given by

dX (1) = w[o — X(8)]dt + odZ(t) (6.1)

where X (t) is the spot spark spread price with a unit of Euro/MWh, « is the
equilibrium spark spread value, x is the mean reversion rate with which the
X(t) is pulled toward «, o is the global volatility of the spark spread series,
and Z(t) is a Brownian motion.

Conditional on the initial realization of X (0), the value of the spark spread
at a future date T' can be written as

X(T) = e TX(0) + (1 — e ") + oe T / : etdZ(t) (6.2)
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We find that X (7) is normally distributed, and its expected value is given
by
Eo[X(T)] = e X(0) + (1 — e " (6.3)

and the variance of X (7T) is

0.2

= —(1—e7) (6.4)

Vare[X(T)]

Assume that the variable cost (excluding fuel cost) of generating one
unit of electricity with a base-load power plant, Gg, is constant through its
lifetime. With a capacity of () and a capacity factor' of £, the instantaneous
cash flow generated by operating this base-load power plant is then

D(t) = QE[X(t) — Gy (6.5)

The future cash flow at date T, conditional on D(0), can be written as

T

D(T) = e *"D(0) + Q¢(1 — e ") (o — Gg) + Qéoe™ T /0 e™dZ(t) (6.6)

We find that D(T') is normally distributed, and its expected value is
Eo[D(T)] = e D(0) + Q¢(1 — e ") (a — Gp) (6.7)

and the variance of D(T) is

Vare[D(T)] = (@) (1 — 2T (6.8)

Under the risk-neutral measure, we assume that the market price of one
unit of diffusion risk Z(¢) is a constant A. The risk-neutral dynamics of the
spark spread is given by

dX(t) = kla® — X(t)]dt + odZ*(t) (6.9)

where
af = a— U—: (6.10)
dZ*(t) = dZ(t) + Adt (6.11)

!The capacity factor describes the efficiency of a power plant. A factor of ¢ means that
over the whole life of the power plant, (1 — &) of the time will be not possible to run.
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The market price of risk A is a measure of the extra return, or risk pre-
mium, that investors demand to bear risk. It is defined by the extra return
divided by the amount of risk. In order to value derivatives, the risk-neutral
process for the underlying is necessary.

Following the Girsanov Theorem, there exists a probability measure p*,
equivalent to the real probability measure p [Bjo04], such that the process

¢
Zf:Zt—i-/ A(s)ds = Zy + At
0

equals Brownian motion under the measure p*.
Then the future value of the spark spread at time 7', X (T"), conditional
on the initial realization X (0), can be written as

X(T)=e"X(0)+ (1 —e " Na* + oe T /T e"tdz*(t) (6.12)

We denote p*(t) as the expected value of X (T') at time ¢ and (0*(t))? as
the variance of X (7') at time ¢ under the risk-neutral measure, then we have

prt) = EIX(T) =e " DX({#)+ (1 —e"Ta*  (6.13)
(c*(t)* = Var X(T)] = %(1 — e 2T (6.14)

In consistency with the Girsanov Theorem, the variance remains un-
changed under the risk-neutral measure.

Next, we come to the cash flow of a base-load power plant. Using a risk-
neutral measure, the future cash flow at date 7', conditional on D(0), can be
written as

D(T) = e~ D(0) + Q¢(1 — =) (0" — Gy) + Qeoe" /0 et dz* (1) (6.15)

where
af = oz—U—A (6.16)
K
dZ*(t) = dZ(t) + \dt (6.17)

D(T) is still a normally distributed process, and its expected value is
written as

E§[D(T)] = e D(0) + Q€(1 — e™")(a" — Gp) (6.18)
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and the variance of D(T) is

2
Varg[D(T)] = %(1 — e T (6.19)
Again, only the expected value of D(T") is changed. The variance of D(T')
remains the same as under the original measure.
Assume that the risk-free interest rate r is constant during the whole time
interval. The present value (at time 0) of receiving an uncertain payoff D(T')
at some future time 7' is

Vo[D(T)] = Egle™" D(T)]
= e "B [D(T)]
ef(rﬂﬂ)TD(O) + Qf(@irT . ef(rer)T)(a* . GB) (620)

Then the value of the base-load power plant with a life time of T can be
described as the value of receiving the continuous dividend cash flow D(t)dt
from date 0 through the future date T. The base-load power plant value,
Vg, can be obtained by integrating equation (6.20) with regard to ¢ over the
time interval (0,7), i.e.,

Vs = B / " Dy

1— 6—(7‘—1—&)7 1— E_TT

= QQX(0) — o=+ (o = Gp)——} (6:21)

The right-hand side of the equation consists of two terms. The second
term is just the present value of an annuity of (a* — Gg) which pays from
time 0 to time T, where (o — Gp) can be viewed as the long-term risk-
adjusted mean spark spread price within one time unit. The second term
is discounted with the risk-free interest rate. The first term can be viewed
as a correction term. It depends on how far away the initial value of X (0)
is from the long-term risk-adjusted mean spark spread price. And the first
term is discounted with the risk-adjusted rate, which equals the sum of the
risk-free rate, r, and the mean reversion rate, k. Equation (6.21) implies that
not only the long-term equilibrium price but also the current level of spark
spread have an impact on a base-load power plant value.

Next we consider a peak-load power plant. We assume the variable cost
(excluding fuel cost) of generating one unit of electricity with a peak-load



118CHAPTER 6. POWER PLANT VALUE AND INVESTMENT DECISIONS

power plant is Gp. Normally, we expect G'p to be greater than G . Following
the analysis in [BE95], the value of a European call option written on D(t)
with a strike price of Gp and a maturity time of 7" is obtained from
Vo[D(T)"] = Q€™ {(1" — Gp)NId] + o™ n[d]} (6.22)
where i
d— w—Gp
O-*
and p*, o*are given by equation (6.13) and (6.14) respectively, N[-] and
n[] are the standard normal cumulative distribution and density functions,
respectively.
Note that a peak-load power plant will shut down when the X(¢) takes
a negative value. Thus the value of a peak-load power plant with a capacity
of Q, a capacity factor of £, and a life time of T, can be obtained from
integrating the right-hand side of equation (6.22), i.e.,

(6.23)

Ve = Vo / TD(t)*dtJ

- Qe / e (1" — Gp)NId] + o™nld)}dt (6.24)

where p*, 0, d are given by equation (6.13), (6.14) and (6.23), respectively,
N[-] and n[-] are the standard normal cumulative distribution and density
functions, respectively.

This result is similar in form as the peak-load power plant valuation
formula in [NF04a]. The reason for this similarity is that both the two-
factor model in [NF04a] and the Ornstein-Uhlenbeck model we used here
assume the underlying spark spread prices follow a normal distribution. One
major difference is that the spark spread prices in this Ornstein-Uhlenbeck
model are "observable" in the markets, while the short-term and long-term
equilibrium prices in the two-factor model in [NF04a| are not.

6.3 Spark Spread Series and Model Estima-
tion

For the estimation of the spark spread model parameters, we use the histor-
ical daily base-load electricity prices from APX and the TTF (virtual Title



6.3. SPARK SPREAD SERIES AND MODEL ESTIMATION 119

Transfer Facility) gas prices from Endex. The price data range from July 1,
2003 to February 14, 2005. We take Februry15, 2005 as the report date (day
0) for the option valuation analysis in later sections. The APX spot electric-
ity prices in the Netherlands can track back to year 1999, but the TTF gas
hub in the Netherlands was only operational since July 2003. Furthermore,
the introduction of emission allowance trading in 2005 implies a structural
change in the market 2, not only because the CO, emission cost will reduce
the spark spread values systematically, but also some new embedded op-
tions are involved®. In order to focus on our option valuation framework, we
control for the impact of emission allowance trading by only using the data
before the official launch of CO, trading in ECX.

In order to construct the spark spread series, we use a constant heat rate of
1.7*. The spark spread series is plotted in Figure 1 against electricity prices.
We can observe several important properties of the spark spread price curve.
Firstly, the spark spread price curve resembles the electricity price curve and
shows a strong mean reversion. This is because electricity and gas prices are
both mean reverting (see for example in [MT02], [DP94], [AC05] and [KR05]).
Secondly, price jumps appear when electricity prices jump to extreme values,
but are much rarer and lower in magnitude than in electricity prices. As
a result, the spark spreads are less volatile than electricity prices. During
the sample period, the annualized volatility of spark spread is 142.61, while
the volatility of electricity is 832.76. Thirdly, the seasonal patterns in spark
spread are not significant, at least not as significant as in electricity prices.
The above three properties of spark spreads can be explained by the positive
correlation between electricity and gas prices. Recall that in Chapter 5 we
estimate a correlation of 0.4431 and 0.2231 between electricity and gas prices
for the winter and summer weekdays, respectively. Electricity and gas prices
tend to move in the same direction, thus the volatility, jumps and seasonal
differences are offset to some extent. Lastly, spark spread can go negative.

2The official trading of carbon dioxide EU allowances (EUA) in the European Climate
Exchange (ECX) starts in April 2005.

3 As we have discussed, emission allowance itself is a real option. According to EU ETS
(Emission Trading Scheme), if an operator does not hold sufficient allowances to meet its
total emissions at the compliance date, a penalty of €40 (rising to €100 in the second
phase) per excess tonne will apply.

4Both electricity price and gas prices are in the unit of Euro/MWh, so the heat rate
has no unit.

For simplicity of analysis, we assume the invested base-load and peak-load power plants
share the same heat rate, although this may rarely be true in reality.
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Note that the heat rate of 1.7 refers to a highly efficient power plant. If we
choose a higher heat rate (i.e., a less efficient power plant), the possibility of
a negative spark spread will be higher. An Ornstein-Uhlenbeck process is a
suitable model since it allows for negative spark spread values.

According to the above arguments, we neglect the seasonal pattern in
the spark spreads when estimating the model parameters, just as in [NF04a].
Furthermore, we treat all spark spread prices above 300 Euro/MWh as out-
liers and replace them with 300 Euro/MWh.

Spark spread price

Electricity price

500 -

Spark spread (Euro/MWh)

~100 L L L I I
0 100 200 300 400 500 600

Time (day)

Figure 6.1: Historical spark spread curve and electricity curve

We estimate the mean reverting model following the approach introduced
in [DP94]. For simplicity, we assume the market price of risk to be zero.
Later in Section 6.7, we will use price information in the forward curve to esti-
mate a market-implied market price of risk. The risk-neutral continuous-time
process in equation (6.9) can be discretized into a first-order autoregressive
process as

r—ri=a(l—e ™)+ (e " =1 1+¢€ (6.25)

where ¢; is normally distributed with mean zero and standard deviation o,

and
2

o

0. = —
< 2%

(1—e ). (6.26)
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By running the regression
Ty — Tp_1 = a +bri_1 + & (6.27)

we can estimate the parameters as

Q>

a = 7 (6.28)
K = —In(1+0) (6.29)

o = & M (6.30)
NVa+b)2-1 '

where &, is the standard error of the regression. The estimated parameters
are reported in Table 6.1.

parameter K o o
unit Euro/MWh
value 0.9133 11.7784 12.9206

Table 6.1: estimated and assigned parameters

6.4 Power Plant Value Sensitivities

In order to compute the value of a power plant, we need to assign some
operational configurations of the power plant. We assume the power plant
to be invested has a capacity of 400 million megawatt. The lifetime is 25
years. For 85% of the time it can be run to generate electricity. The base-
or peak-load power plant has a variable cost of 4.25 or 5.45 Euro for each
megawatt of its output, respectively. This variable cost may contain all costs
that can be allocated to unit output, such as depreciation, salaries, emission
costs, and etc., but not including the fuel cost. The investment cost for a
base-load power plant is 250 million Euro, while a peak-load plant costs 300
million Euro. These costs are assumed to increase with the risk-free interest
rate 0.06 per year. For a base case scenario, we assume an initial spark spread
value of 2.07 Euro/MWh. These assigned parameters are listed in Table 6.2°.

®The power plant configurations are based on [NF04a] and [NF04b].
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parameter () Xo & T
unit MW  Euro/MWh Year
value 400 2.07 0.85 25
parameter 1 Gg Gp Ip Ip
unit Euro/MWh Million Euro
value 0.06 4.25 4.75 250 280

Table 6.2: Power plant configurations

Our purpose in this section is to examine the influences of different pa-
rameters on the power plant value. At each time in the following analyses,
we alter the parameter of interest and keep all other parameters retain their
base case values as given in Table 6.1 and Table 6.2.

First, we look at the effect of the lifetime of the power plant, 7. The curves
in Figure 6.2 plot the power plant value as a function of its lifetime. We can
see that the power plant value increases with its lifetime, but converges to
one value when the lifetime is close to 50 years. The convergence of the power
plant value can be explained by the mean reversion of spark spread series.
Mean reversion makes the cash flows of the power plant in far future into a
perpetual annuity, which has a constant value under a constant interest rate.
We can also see that the peak-load plant value is always above the base-load
plant value. The value differences between these two types of plants reflect
the option type flexibility of a peak-load plant, with which a peak-load plant
can choose to run or not to run according to differences between the spark
spread price and the variable cost.

As we have pointed out earlier, a base-load power plant resembles a string
of forward contracts, while a peak-load power plant resembles a string of
option contracts. This is reflected in Figure 6.3, where the power plant values
as a function of volatility, o, are plotted. It can be seen that the peak-load
plant value increases significantly with the volatility of spark spread while
the base-load plant value is insensitive. With higher volatility, spark spreads
are more likely to go below variable costs, and therefore, peak-load plant
can avoid more losses in contrast to a base-load plant. If we look back at
equation (6.21) and (6.24), we can find that o does not play a role in the
calculation of a base-load power plant value, but does appear in calculating
a peak-load plant value.
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Figure 6.2: Power plant value as a function of lifetime, T

Figure 6.4 plots the power plant value as a function of the initial spark
spread, Xy. We find that the base-load curve is just an increasing straight
line, while the peak-load curve resembles the curve of a call option. For
sufficiently negative spark spreads, the base-load plant value can become
negative, while the peak-load plant value remains always above zero. When
the initial spark spread increases the base-load plant value moves closer to
the peak-load plant value.

Figure 6.5 plots the power plant value as a function of the equilibrium
spark spread, a. We can see that the base-load curve is an increasing straight
line, while the peak-load curve resembles the curve of a call option. With
sufficiently high equilibrium spark spreads (when X > 18.10 Euro/MWh), a
peak-load plant will be very likely to be run around the clock just as a base-
load plant. The lower variable cost of a base-load plant will make it more
profitable than a peak-load plant. The arguments are similar as those for
the initial spark spread, Xy, but the initial spark spread and the long-term
equilibrium spark spread are different concepts. Note that X reflects the
observed spark spread price in current market situation, it is dynamic; while
a reflects the long-term equilibrium spark spread price level, it is structurally
exogenous and is assumed constant in our one-factor model.
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Figure 6.3: Power plant value as a function of spark spread volatility, o

Next, we analyze the power plant value sensitivity with regard to the
mean reverting rate, k. The results are reported in Figure 6.6. The three
panels correspond to three scenarios where the deviations of initial spark
spread from spark spread equilibrium value are different. In all scenarios,
the peak-load plant value decreases with x, and converges to a flat line when
k grows greater than 10. The impacts of x on base-load plant value are
more complex and differ among the three scenarios. When Xy < « (upper
panel), the base-load plant value increases with x, and converges to a flat line
eventually. When X, = a (middle panel), base-load plant value is insensitive
to k. When X > «a (bottom panel), the base-load plant value decreases with
k (the decreasing speed is slower than that of peak-load plant value), and
converges to a flat line eventually.
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Figure 6.4: Power plant value as a function of initial spark spread value, X

Figure 6.5: Power plant value as a function of equilibrium spark spread, «
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Figure 6.6: Power plant value as a function of mean reversion rate,

The impact of  on a peak-load plant value can be explained by the option
type contract for a peak-load plant. Recall that call option values increase
with the underlying volatility, as shown in Figure 6.3. In equation (6.14), we
find that the spark spread volatility ¢ is a decreasing function of k. As k
goes to infinity, o converges to zero. This explains why the peak-load plant
value always decreases with . For a base-load power plant, the spark spread
volatility ¢ has no impact on the power plant value, as shown in Figure 6.3.
Instead, x participates in computing a base-load plant value through the
expected spark spread F[X], which is given by equation (6.13). Figure 6.7
displays different scenarios for equation (6.13). It is easy to find that the
way k affects the expected spark spread E[X] depends on the initial spark
spread level, Xy. When X, < a, & is the force pushing the spark spread up
to the long-term equilibrium level, a. When X, > «, k is the force pulling
the spark spread down to a. Note that in Figure 6.7, o keeps on a constant
value given in Table 6.1. The different directions of mean reverting force x
lead exactly to the different impacts on the base-load power plant value in
Figure 6.6.



6.4. POWER PLANT VALUE SENSITIVITIES 127

60

50

40

% X(0)=52.7
kappa=0.9133

E[X(T)] (Euro/Mwh)

20~

X(0)=52>
X(0)=2.0 kappa=2.5

appa=2.5
2

10+ -

X(0)=2.07
kappa=0.9133

0 1 2 3 4 5 6 7 8 9 10
T (in year)

Figure 6.7: Expected spark spread value, E[X]

The variable costs, Gg and Gp, and the market price of risk A, are the
terms to be deducted from the spark spread when calculating the cash flows
of a power plant. As expected, they both have a negative impact on the
power plant value. The impact of variable costs are plotted in Figure 6.8. It
can be seen that the base-load plant value decreases linearly with G, while
the decreasing effect from Gp is partly absorbed by a peak-load plant. The
impact of A\ has the same shape as that of G and Gp, so the curve of A
impact is not reported here. In practice, the information of variable costs
can be collected from the operational details of a power plant. However, the
market price of risk must be derived from the financial markets. In Section
7, we will conduct an estimation of the market price of risk.

Figure 6.9 plots the changes of power plant values when the risk-free
interest rate r changes. With the increase of r, the values of both type of
power plants decrease almost in parallel. The curves resemble the curve of
an inverse function. This effect is consistent to our expectation since r serves
as the discount factor in determining the power plant values.
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Figure 6.9: Power plant value as a function of risk-free interest rate, r

In previous sensitivity analyses, we have used the same approach: Exam-
ine the power plant value changes by letting the parameter of interest change



129

kappa
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The sensitivity analyses above shed some lights on the role that each
parameter plays in determining the value of a power plant. More importantly,

ues. Figure 6.10 is an example of such joint analyses. When the initial spark
Figure 6.10: Joint effects of X and s on a base-load plant value

spread X is low, the base-load power plant value increases with x; when X
in Figure 6.6. Note again that o keeps on a constant value as given in Table
we have continuously found the consistency between the analysis results and
operational realities of power plants. These findings, from one angle, validate
the power plant valuation formulas.

these formulas repeatedly for the valuation of power plant investment options.

is high, the power plant value decreases with k. These are exactly the results
6.1.

while other parameters remain constant. However, it is more informative to
investigate the joint impacts of two different parameters on power plant val-

6.4. POWER PLANT VALUE SENSITIVITIES

Within our framework, the power plant value will be determined as a function

of the observed initial spark spread price, which is the only factor in our one-

factor model.
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6.5 The Option to Invest in a Base- or Peak-
load Power Plant

In this section, we valuate the investment options in a base- or peak-load
power plant under various scenarios. The maturity of the investment option
varies from zero, infinite time, to a finite time period. The option to invest
in an expandable power plant is also considered. In the cases where a closed-
form solution is not available, we use both the Hull and White trinomial tree
and the Least Squares Monte Carlo method.

6.5.1 Now-or-Never Investment

For a now-or-never opportunity to invest in a base- or peak-load power plant,
the option value is simply determined by comparing the invested power plant
value and the investment cost. Let Fg, Fp, and F¢ be the option value of
investing in a base-load, peak-load, base- or peak-load power plant, respec-
tively. The values are given by

FB = maX(VB - ]B> O) (631)
Fp = maX(VB - ]p, 0) (632)
FC = maX(VB - IB, VP - ]p, O) (633)

where Ig and Ip are the investment cost of a base-load and a peak-load power
plant, respectively.

With the parameters in Table 6.1 and Table 6.2, we obtain the graphs of
now-or-never option values as a function of the initial spark spread value in
Figure 6.11. The solid line is the curve for Fz, and the dashed line is the
curve for Fp. At each initial spark spread value, Fo takes the higher value
of Fg and Fp, so it is the upper envelop of the latter two curves.

In Figure 6.11, Fp has the shape of a call option value, while Fz has the
shape of the pay-off function of a call option. This is because both Fz and Fp
are options with a maturity of zero, and a base-load plant resembles a forward
contract while a peak-load power plant resembles a string of European call
options. Since Vp can be calculated easily with equation (6.21), so does Fp.
Fp is actually a compound option. Valuation of simple compound options
has a closed-form solution, which can derived from the Black-Scholes [Ges79].
Due to the complex payoft function of Fp, a closed-form calculation will be
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tedious. Alternatively, we use numerical integration to compute Vp with
equation (6.24) and calculate Fpp with equation (6.32).

Both Fp and Fp are monotonically nondecreasing in X,. When X,
increases from an extremely negative value, Fp begins to take a positive
value earlier (when X, = —17.34 Euro/MW) than Fp (when X, = —5.96
Euro/MW). Fg increases faster than Fp and climbs above Fp at X = 10.86
Euro/MWh. At this point, there is no difference between investing in a
base-load plant and in a peak-load plant. When X, < 10.86 Euro/MW,
a peak-load plant is preferable than a base-load plant. When X, > 10.86
Euro/MW, it is better to invest in a base-load plant.
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Figure 6.11: Now-or-never investment option values

As we pointed out earlier, the investment right is usually auctioned. Let
us assume the government offers a licence to invest either in a base- or peak-
load power plant with all the technological details specified in Section 6.4, and
the investment must be executed right after the licence is issued. The market
price of this licence is then equal to the value of Fy,;,. For example, when
Xo = 2.07 Euro/MWHh, the licence value is Fpo,(2.07) = Fp(2.07) = 16.98
million Euro. A peak-load power plant is the optimal choice.

To decide the best bidding price, a bidder must add a premium to the
market value of the licence according to its competitive position and strategic
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considerations. The determination of the optimal premium is beyond the
scope of this thesis, and is therefore excluded in our discussion.

6.5.2 Perpetual Option to Invest

Now we consider the case in which the licence holder can wait to invest.
Let F(X) denote option value to invest in a power plant, where X is the
spark spread price which follows the Ornstein-Uhlenbeck process described
in equation (6.9). Although the spot markets of electricity and gas are not
complete, all the derivatives payoffs can be replicated by trading futures
or forward contracts [DJSO01]. In another word, all the uncertainties in the
derivatives can be spanned by tradable assets (see for example in [Duf01] and
[DP94]). Using the contingent claim method, £'(X) must satisfy the following
differential equation (F'(X) is sometimes written as F' for simplicity):

1
502FX;< +r(@* = X)Fx+F,—rF+D=0 (6.34)
where D is the instantaneous cash flow generated by the project. The in-
vestment option does not generate any cash flow during the holding period
of the option, so D is equal to zero. And for a perpetual investment option,
the term with a partial derivative with regard to time ¢ disappears. Then we
have

1
5a2FXX +r(a* = X)Fy —rF =0 (6.35)
The equation must satisfy the following boundary conditions:
F(—o0) = 0 (6.36)
FX*) = V(X" -1 (6.37)
F'(X*) = V(X% (6.38)

where X* is the threshold spark spread at which it is optimal to invest.

The first condition above says that as the spark spread takes large neg-
ative values, the power plant value goes to zero, so does the investment
option value. The second and third condition are just the value-matching
and smooth-pasting boundary conditions as introduced in [DP94].

We first consider the perpetual option to invest in a base-load power plant,
where the plant value is given by equation (6.21). We rewrite equation (6.21)
as

Vg=®X +06 (6.39)
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where
1— ef(r+/-c)T
o = _
@8 T+ K
e—(r—H@)T -1 1— e—rT
0 = Qo 4 (0" - Gp)——
Q¢ e + (a B) . ]
The three conditions then become
F(—o0) = 0 (6.40)
F(X*) = V(X*)—1Ip (6.41)
F'(X*) = & (6.42)
The PDE given in equation (6.39) can be transformed into a Kummer’s

Differential Equation [AC05], to which a general closed-form solution exists.
This solution includes a Tricomi’s or second-order hypergeometric function
and a Kummer’s or first-order hypergeometric function [AC05]. Applying the
bounding conditions to the general solutions, the coefficients to the Tricomi’s
and Kummer’s functions can be determined. Due to the lengthiness and
complexity, we exclude the full derivation in this thesis.

With the parameters given in Table 6.1 and Table 6.2, the optimal spark
spread price to invest in the base-load power plant is calculated to be 54.68
Euro/MWh. We can easily prove that at the optimal spark spread value, the
base-load power plant value is higher than the investment cost, i.e., Vg(X*) >
Iz. This relation justifies the value of the option to wait. Furthermore, the
relatively high triggering spark spread price is largely correlated with the
perpetual property of the option and the high volatility of the spark spread
process.

When comes to the investment option for a peak-load power plant in
infinite time, recall equation (6.24) which gives the value of the power plant
as a function of the initial spark spread, both the first- and second-order
derivatives with regard to the spark spread are not analytically solvable.
Thus, equation (6.35) does not have a closed-form solution. Furthermore, for
both the base- and peak-load power plant investment options, there is not a
closed-form solution when the option maturities are finite, which means the
term F}; cannot be eliminated from equation (6.34). In these cases where a
closed-form solution is absent, numerical methods are required to solve for
the option values. In short, within the framework we used in this chapter,
a closed-form solution to the value of the option to invest only exists in the
case to invest in a base-load power plant in infinite time.
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6.5.3 Option to Invest in a Finite Time Period

In this subsection, we consider the options with a finite maturity. As we
already know, these option values do not have a closed-form solution. In
stead, we rely on numerical methods, namely the Hull and White Trinomial
tree and the Least Squares Monte Carlo method, to valuate these investment
options.

Hull and White Trinomial Tree

The Hull and White model is a single-factor short-term interest rate model,
in which the state variable is normally distributed and subject to mean re-
version. With this model, analytical solutions exist for discount bonds and
plain-vanilla options. However, for exotic derivatives with path dependence
or more complex payoff functions, numerical methods are necessary. Hull and
White introduce a tree-building method which is computationally effective
[HW94a] [HWI6].

The Hull and White model is a no-arbitrage interest rate model in which
the parameters are time varying in order to match the term structure at each
time point. Due to the absence of sufficient term structure data, we consider
a simplification of Hull and White model. In our analysis, all the parameters
are estimated from historical data and are not time varying. At any time,
we assume the term structure is exactly the forward curve implied from the
model, so as defined in equation (6.12).

We follow the Hull and White tree-building method for our option pricing
purpose. The procedure involves dividing the process of equation (6.9) into
two processes. The first process has an initial value of zero. This process is
given by:

dX*(t) = —rX*(t)dt + odZ*(t) (6.43)

The second process is the difference between the risk-neutral spark spread
process defined in equation (6.9) and the first process defined by equation
(6.43).

p(t) = X(t) — X*(1) (6.44)
By equation (6.9) and (6.43) and we have
do(t) = [ka™ — kp(t)]dt (6.45)

Equation (6.45) is a separable first order ODE and the solution to ¢(t)
is equal to the forward curve at ¢ = 0, which is defined by equation (6.12).
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So the second process is simply given by
o(t) =e ™X(0)+ (1 —e"a* (6.46)

If the option has a maturity of 7" years and we use N steps, we have the
time interval for each step equals to dt = T'/N. The second process has one
certain value at each time t. The diffusion is captured in the first process,
where the trinomial trees are built.

The trinomial tree for the first process starts at value zero. At each node
(7, 7) before maturity, the value of X* can move to three magnitudes to the
next time period 7 + 1 with varying possibilities. In order to minimize the
approximation error, the jump size is set to be constant at ov/3dt. In order
to ensure the risk-neutral probabilities at each node to be positive, Hull and
White introduce the maximum number of successive upward jumps, Jyaq,
which is set to be the smallest integer greater than 0.184/(kdt). When J,,q,
of upward jumps happen, the price can no longer increase. Instead, the price
then can remain, go down by ov/3dt or go down by 20v/3dt. In the opposite
direction, J,,;, is set to be —J,,.,. Thus, to construct a trinomial tree, we
start at node (0,0), X*(0,0) = 0. If we are at node (i, j), then, we have three
choices for the branches illustrated in Figure 6.12.

e Branch (A) is used if Jim < J < Jmaz;
e Branch (B) is used if j = Jouin;

e Branch (C) is used if j = J0z-

< LN

A B C

[ ]
=

—

Figure 6.12: Hull and White tree branches
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The constructed trinomial tree for X* is symmetric about the horizontal
line j = 0, and J,,,4, is the number of nodes on either side of the line j = 0. At
each node (i, j), let P,, P,,, P, denote the risk-neutral probability of moving
to the highest, middle, and lowest node of time (i 4 1)dt, respectively. Then
we have

X*(t,§) = jo/3dt (6.47)

It turns out that at (i,j), P,, Pn, P; only depends on j. Constraining
on the mean and variance of X*(i,j + 1), X*(¢,7), X*(4,j — 1) and using
P,+ P,,+ P; = 1, we can solve for the probabilities for each type of branches.
For branch (A)

1 kdt)? — jrdt
p, = L Urd)” —jx (6.48)
6 2
2
P, = g—(j/fdt)Q (6.49)
1 . 2 .
P, - _+(j/<;dt) + jrdt (6.50)
6 2
For branch (B)
1 . 2 .
P _+(j/<;dt) + jrdt (6.51)
6 2
1
P, = —g—(jﬁdt)z—Zjndt (6.52)
7 (jrdt)? + 3jrdt
py = L UKD+ 3x (6.53)
6 2
For branch (C)
. 2_ .
P - z+(]/<adt) 3jkdt (6.54)
6 2
1
P, = —g—(jmdt)2+2j/<;dt (6.55)
1 kdt)? — jrdt
P, = 6+(‘7'{ )2 24 (6.56)

The final tree is constructed by adding the second process, i.e., the for-
ward prices to the trinomial tree for X*. An illustration of the final tree
is graphed in Figure 6.13. In a Hull and White trinomial tree, the price
changes in the underlying are additive, which is capable of handling a process
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that allows negative values. The popular CRR tree [CRR79] used in the
Black-Scholes framework does not work when the state variable follows an
Ornstein-Uhlenbeck process. Furthermore, the Hull and White tree has the
advantages of minimizing the approximation error in the mean and variance,
and mimicking the mean reversion in the underlying.

Figure 6.13: Tllustration of a complete Hull and White tree

Our initial purpose is to value the investment option at t = 0. The
backward induction procedure can then be used in the same way as in a
CRR tree when valuing an option. Take the base-load investment option for
example, the payoff of the j-th path at maturity is

F(Inae, j) = max[Va(X ((Inae, j) — €= 15, 0] (6.57)

At each node before maturity, the option value is equal to the greater of
the continuation value, i.e., the value of waiting until the next period, and
the exercising value, i.e., the value of investing in the power plant right now.
Note that in a Hull and White tree, we need to distinguish three types of
nodes which are determined by the three types of branches they have for
the next time step. For nodes that are neither at the upper edge nor at the
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bottom of the tree, type A branch applies. The option values are given by

F<Z7J) - ma’X{VB(X((Zn]) - eridt]B>
e P, F(i+1,j+ 1)+ P,F(i+1,5)
+PF(i4+ 1,5 —1)]} (6.58)

For nodes that are at the bottom edge of the tree, type B branch applies.
The option values are given by

F<Z7]) - ma‘X{VB(X((Z7]) - eMUZtIB7
e P, F(i+1,7) + PoF(i+1,j+1)
+P,F(i+1,7+2)]} (6.59)

For nodes that are at the upper edge of the tree, type C branch applies.
The option values are given by

F(Zaj) = maX{VB(X((Zaj) _eTidtIBv
e " P,F(i+1,j) + PoF(i+1,j—1)
+PF(i+1,5—2)]} (6.60)

We perform the backward induction iteratively at all previous time steps
up to time zero. F'(0,0) is just the option value to invest in a base-load power
plant. We use the Matlab program to deal with the calculations.

In Figure 6.14, we plot the option values for both base- and peak-load
power plants with a maturity of 5 years. The total time step N is set to be
520°. Both the the base- and peak-load plant investment option value have
the shape of a call option. At each spark spread value, the option value is
higher than in Figure 6.11. For example, at Xy = 2.07, the option value
to invest in the peak-load power plant is 27.16 million Furo. This is due to
the value to wait in the 5 years. We also find that a peak-load power plant
investment option has a higher value than that of a base-load power plant
investment option when the spark spread is lower than 5.42 Euro/MWh. This
threshold to switch from investing in a peak-load to a base-load power plant
is higher than the one we found in the now-or-never investment case, which
implies again that in a longer time period to make an investment choice, the
option to wait is valuable.

In our experiments, when N > 509, the option value change is less than 0.1%. In
other word, the option value converges.
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Least Squares Monte Carlo

The Least Squares Monte Carlo (LSMC ) method involves generating a large
number of paths for the underlying spark spread process, and regressing on
the basis functions with the in-the-money paths at each step [LS01]. Paths of
the spark spread are given as an example in Figure 6.15. The mean reversion
property of the price process can be observed in the paths. Based on such
spark spread paths, the payoff of the option at each time step on each path
can be determined. Taking a base-load plant investment as example, at the
maturity of the option, the investment value of each path is given by

max[Vp(Xr) — e 15,0] (6.61)
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Figure 6.14: Investment option value with a maturity of 5 years

For all the steps before maturity, the continuation value is assumed to be
determined by a linear combination of basic functions. Following [LS01], we
use the powers of the state variable X as the basic functions. At time step
7, we have

EZQ I:F’i+1] ~ ag + alXi -+ agXiQ + Clg)(;3 (662)
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where EZQ is a risk-neutral expectation operator at time 7, Fj,; is the contin-
uation value of time 4, and aq, ao, a3, a4 are the linear coefficients.
Following [L.S01], we only consider the in-the-money paths for the regres-
sions. The parameters at each time step are estimated by ordinary least
square method, and then we calculate the continuation value for each path
at that time step. The optimal exercise rule is thus to exercise if the con-
tinuation value is lower than the exercise value max[Vi(X;) — eI, 0] and
verse visa. Now we have for all paths the best moments to exercise. For each
path, we perform backward induction iteratively up to time zero. The time
zero value of the option, Fj, is obtained as the value of the option for that
path. Let the total number of paths to be M. The average of the time zero
values of all the M paths is just the value of the investment option. That is:

1
Fo=— Z Fio (6.63)

Spark spread value (Euro/MWh

Figure 6.15: Paths of spark spread prices

For the LSMC method, we set the total number of paths M is set to be
25000, and the time step to be one day, i.e., i = 1/3657. We find the results

"With the time step of one day, we are assuming a peak-load power plant can make its
decision every day.



6.6. OPTION TO EXPAND 141

are very close to those of the Hull and White tree method in the previous
subsection. The average error in the option values between these methods
(based only on the integer spark spread values from -20 to 100 Euro/MWh)
is 0.0215 million Euro.

It is well known that the LSMC method is subject to computational
burden. The computational effort is linear in the number of the number
of steps and nearly linear in the number of simulation paths [AB04]. In
our experiments, the calculation of the value of a peak-load power plant
investment option with a Pentium 4 2.60 GHz computer takes more than 11
hours.

6.6 Option to Expand

In this section, we consider additional flexibility in the opportunities to invest
in a power plant. In addition to the option to wait, we may have an option
to expand or an option to upgrade the power plant and an option to abandon
the project. The option to abandon is proved to be of little value in [NF04b].
In contrast, the option to upgrade from a base-load plant to peak-load plant
is much valuable. In [ACO06], an option to double the capacity of a base-load
power plant is valued with the LSMC method.

Following [AC06], we consider the investment on an expandable power
plant. We contribute by analyzing the value differences between investing in
a base- and a peak-load plant.

We assume the investment opportunity is a 400 MW power plant that
must be built up right now® and can be expanded into a 600 MW power plant
5 years later. The expansion can be executed within 5 years. The initial
investment cost for such expandable base-load power plant is 275 million
Euro. The cost to invest in an expandable peak-load plant is 330 million
Furo. The cost to expand the base-load plant is 100 million Euro, and the
cost to expand the peak-load plant is 125 million Euro. Our purpose is
to value the opportunity to invest in such an expandable power plant. In
another word, what is the market price of a licence of investing in such an
expandable power plant?

In our experiments, when M > 22458, the option value change is less than 0.1%. In
other word, the option value converges.

8For simplicity, we are assuming here the building time of the power plant to be zero.
In [ACO06], the building time is taken into account.



142CHAPTER 6. POWER PLANT VALUE AND INVESTMENT DECISIONS

As in previous sections, we assume that the underlying variable, the spark
spread X (t), follows the stochastic process given by equation (6.1) and the
risk-neutral process is given by equation (6.9). We construct the Hull and
White trinomial tree to approximate the mean reverting process and obtain
the option value by iterative backward induction. We use also the Least
Squares Monte Carlo method to value the options to invest in expandable
power plants. Again, the results from these two methods are very close. The
option values are plotted in Figure 6.16.
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Figure 6.16: Option values in investing in an expandable power plant

The option value curves in Figure 6.16 resemble the shape of the curves in
Figure 6.14. However, the curves in Figure 6.16 can be roughly be regarded
as the sum of the option value in Figure 6.11 and half of the option value in
Figure 6.14, but at different exercise prices. This is because we can decom-
pose the option value into two parts: the option to invest in a nonexpandable
power plant, and the option to expand the capacity.

If we assume the investment cost of a power plant is proportional to its
capacity, the cost of investing in a 600 MW base-load power plant is 525
million Euro. With an initial spark spread of 2.07 Euro/MWh, the option to
invest in a 600 MW base-load power plant is 19.48 million Euro. At the same
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initial spark spread price, the value of the option to invest in an expandable
base-load power plant (first 400 MW, and then expands to 600 MW) is 38.52
million Euro. The value difference, which equals to 19.05 million Euro, is the
value of the option to expand.

In the case of investing in an expandable power plant, note that the
exercise of the first option is the condition for activating the second option.
This makes the first stage of the investment more likely to be executed.

In comparison with the result in Figure 6.11, the initial spark spread
threshold to switch from a peak-load power plant to a base-load power plant
is lowered to 7.52 Euro/MWh. Recall that the threshold in Figure 6.11 is
10.86 Euro/MWh. When the initial spark spread is low, it is expected to
increase in the future, which favors an expand option to invest in a peak-
load power plant. In our numerical example, the cost savings of a base- and
peak-load expandable power plant are kept at the same scale. Thus, the
cost savings difference does not contribute to the change of the switching
threshold.

6.7 Market Price of Risk

Standard arbitrage arguments establish the risk-neutral measure for deriva-
tives pricing (see for example in [CIR85] and [LS02]). If we know the market
price of risk, we would know the dynamics of the stochastic component of the
underlying in the risk-free world and, hence, we could price any derivatives
written on the underlying.

In [ACO5], the risk-neutral valuation of power plants is performed in the
Spanish market. The market price of risk is assumed to be zero simply
because there is no traded electricity forward or futures contracts in Spanish
power exchange at the reporting date. However, the risk premium in gas
prices was estimated with the NYMEX natural gas futures data. Apparently,
this asymmetric treatment would lead to a bias in the risk-neutral spark
spread process.

The historical spot price data contain no information for the market price
of risk. Thus, market price of risk can only be extracted from derivatives
markets. One way to obtain the market price of risk is to imply it from
option prices [Wer05]. This technique resembles the recovery of the implied
volatility with the Black-Scholes model. However the spark spread options are
not traded in the market. Neither can the option prices be easily constructed
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from traded contracts. Alternatively, we turn to imply the market price of
risk for the spark spread from the forward curve. Although the forward or
futures spark spreads are not traded directly in the markets, we can construct
a forward curve under a certain heat rate by using the similar approach for
the construction of the spark spread spot price series.

We need both the electricity forward price and the gas forward price to
calculate a forward spark spread price. The Dutch electricity and gas futures
market Endex only started to publish reference prices for the Dutch TTF
gas from February 9, 2005°. At the reporting date, February 15, 2005, we
have only a few days of observations of the gas futures prices and they are
not sufficient to build a meaningful spark spread futures series. This is the
reason why we use the historical spot spark spread series rather than the
futures spark spread series as the underlying variable.

On the reporting day, February 15, 2005, we observe in Endex in total
8 gas futures contracts. Their maturities are: 1-3 months, 1-2 quarters, 1-2
seasons and 1 year. For each of these delivery period, the electricity futures
price can be observed or implied from the traded contracts as well'®. Thus,
on the reporting day, we can construct the "observed" spark spread forward
curve. With a fixed heat rate of 1.7, this forward curve is plotted by the
eight solid flat lines in Figure 6.17.

Following the method in [CS03|, the market price of risk for the spark
spread is obtained by minimizing the sum of the squared errors between the
"observed" futures spark spread prices and the model implied futures prices,
ie.,

8
f— 1 - — /\. 2
A= arg min Z;(FZ F;) (6.64)

where F; is the i-th futures contract price "observed" in the market and E
denotes the i-th futures contract price based on the one-factor model in the
previous sections. Recall that the model implied term structure is given by
equation (6.12). All parameters except A are known from the estimations
in Section 6.3. The model implied price of the i-th futures contract which

9The official lauching of trading of TTF gas forward contracts on Endex was on 31
March 2006.
10The longest maturity of electricity futures in Endex is 3 calendar years.
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requires delivery from time ¢; to ¢ is therefore given by

. 1 &
F, = e M X(0) + (1—et)a 6.65
s ; (0) +( ) (6.65)
where \
o =a— % (6.66)
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Figure 6.17: Observed, model implied, and risk-adjusted term structures of
spark spread on February 15, 2005

By running an Fminbnd function in Matlab, we obtain the implied market
price of risk for spark spread to be A = —0.0354. Substituting the value of A
back to equation (6.16), we obtain the risk-adjusted term structure which is
represented by the dotted curve in Figure 6.18. The solid curve is the model
implied term structure assuming a zero market price of risk. At each time
of maturity, the vertical distance between these two curves reflects the risk
premium that applies in calculating a risk-adjusted cash flow.

A negative market price of risk is widely identified in the energy markets.
[Sch97] reports a negative market price of risk for oil with a one-factor model.
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[Ron02] finds negative market prices of risk at the Pennsylvania-New Jersey-
Maryland (PJM) electricity market. [CF05] reports a negative market price
of risk in the England and Wales electricity market. The negative premium is
related to compensating the possibility of hourly or daily spikes that exists in
the electricity prices and the spark spread prices. Forward or futures sellers
who give up the spikiness of hourly or daily prices opportunities by selling
at a fixed price must ask for a premium. However, the market price of risk
of an energy product is not always negative. In the theoretical discussion in
[BCKO6], the market price risk premium is related to behavior of the market
players. It is argued that if the producers have more market power!!' than the
consumers, the market price of risk will be negative to reflect the advantages
of the producers. This reflects the properties of a sellers market. In the Dutch
electricity market, the producers are believed to have remarkably high market
power [NVV03].

Next, let us see how a negative market price of risk would affect the value
of a power plant and of an investment option. According to equation (6.16),
a negative market price of risk implies an increase in the equilibrium spark
spread in the risk-neutral world, and subsequently an increase in the power
plant value and investment option values. With all model parameters except
A remain as in Table 6.1 and Table 6.2, the equilibrium spark spread will
increase by —"7’\ = 0.5008. The base-load power plant value will increase
by 1.5325 million Euro, and the peak-load power plant value will increase
by 0.8678 million Euro. The option to invest in a nonexpandable base-load
power plant value in 5 years will increase by 0.4837 million Euro, and the
option to invest in a nonexpandable peak-load power plant in 5 years will
increases by 0.2433 million Euro.

6.8 Conclusions and Further Research

This chapter provides a framework of valuating power plants and investment
licences. The analyses are based on a one-factor mean reverting model for
the spark spread process.

In the electricity supply industry, the spark spread is the core value driver
of gas-fired generation assets. As a single time series, the spark spread shows

'Market power is typically defined as the ability to profitably alter prices away from
competitive levels. The European Union defines Significant Market Power (SMP, specifi-
cally, in communications markets) as equivalent to the concept of dominance.
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several merits. We can avoid the estimation of the correlations between the
electricity and the gas prices without losing the correlations information.
We can neglect the seasonality pattern in the spark spread series since the
positive correlation between electricity and gas prices tends to offset much of
their cyclical movements. We show that the Ornstein-Uhlenbeck process is
an appropriate description of the spot spark spread series. The closed-form
valuation formulas for a base- and peak-load power plant show consistent
properties with the operational characteristics of each type of power plants.

The investment licence for power plants is valued as American options.
For different types of power plants, we value the investment option by using
both the Hull and White trinomial tree and the Least Squares Monte Carlo
method. These two methods yield similar results. For all investment options,
we find out that the option to invest in a peak-load power plant is worth more
than the option to invest in a base-load power plant when the spark spread
is lower, and verse visa. The threshold to switching from investing in a peak-
load power plant to a base-load power plant increases due to the option to
wait.

We estimate the market price of risk from the constructed spark spread
forward curve on the report day and find a negative market price of risk
for the spark spread in the Dutch markets. This implies more value for the
invested power plants and the investment options.

The research along this line can be extended in several directions. Firstly,
it is easy to extend the one-factor model to a multi-factor model by letting
the equilibrium spark spread to be stochastic. We expect the two-factor
model will be more flexible to capture the dynamic term structures of the
spark spread, especially when a long series of forward curves is available in
the markets.

Secondly, we can take into account the jumps and the seasonal effects of
spark spreads in the model. Just as the electricity price distributions, the
spark spread prices have as well a fat tail skewed to the right. We expect a
richer model will improve the goodness-of-fit of the model, especially in terms
of higher order moments. In consequence, the power plant and investment
option values can be obtained either by Monte Carlo simulations or with the
decomposition approach introduced in [DHO03].

Thirdly, we may introduce game theoretic models to reflect the compe-
tition between market players. We believe the energy prices will change in
response to a new capacity and the first mover advantages do exist.

Lastly and most importantly, we can apply our model to possible real
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cases where a power plant licence is auctioned or a transaction of existing
power plants is made. Comparing the model implied price and the real
transaction price provides an efficient way to validate and improve our model.

In the next chapter, we will summarize the main finding in this thesis

and present discussions on several relevant issues.



Chapter 7

Concluding Remarks

7.1 Summary of Conclusions

This thesis focuses on the real options applications in the energy markets,
especially in the electricity supply industry. The real options method has
been used for the valuation of generation assets and the decision-makings
in operation and investment. This section provides a summary of the main
findings throughout the thesis.

7.1.1 Electricity Prices Modeling

To carry out any real options analysis on a power-related asset or an invest-
ment opportunity, the electricity price modeling is the starting point. Elec-
tricity prices are notoriously hard to model due to their exotic behaviors.
The extraordinarily high volatilities, strong mean reversion, salient cyclical
price patterns, and occasional occurrence of price spikes may demand very
complicated models.

In Chapter 4, we carry out an empirical analysis with the Dutch and
German electricity market data, by using a jump diffusion model and vari-
ous regime switching models. We find that the regime switching models have
a superior performance than the jump diffusion model in terms of replicating
the higher moments in the historical price data and forecasting electricity
prices. The parameters of a regime switching model are more difficult to
estimate than the jump diffusion model, because the former involves an Ex-
pectation Maximization method. The derivatives pricing under a regime
switching model is less addressed in literature than jump diffusion models.

149
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However, this is not a problem when we use the Monte Carlo simulation
method for derivatives pricing.

7.1.2 Power Plant Valuation

The real options method can capture the managerial flexibility in an asset or
a project. Thus, the real options valuation is able to reveal more value than
the traditional discounted cash flow method. This argument is established
in Chapter 2 and Chapter 3. For a peak-load power plant, the operator can
shut down the turbines when the spark spread is lower than the variable cost.
In a real options framework, a peak-load power plant is modeled as a string
of call options on the spark spreads. Nevertheless, the option-based value of
a peak-load power plant can be considerably dampened by the volumetric
risk factors from both the supply side and the demand side. The supply-side
risk is determined by the operational constraints of a power plant. In a real
options term, the operational constraints lead to either an increase in the
strike price or a decrease in the total volume of the embedded options.

In Chapter 5, we perform the Monte Carlo simulations with and without
these operational constraints in a near-reality case. As expected, the power
plant values are decreased by each of these constraints. The decreasing effects
of some constraints, namely, the forced outage rate, the maintenance rate and
the spinning reserve rate, are significant.

Power plants are often obligated to serve an aggregate customer load.
When we take the demand-side uncertainty into account, the power plant
can be valued as a portfolio, which consists of a string of call options on
spark spreads and an aggregate customer load contract. In an efficient spot
market, a load-servicing power plant would sell its surplus electricity and buy
spot electricity if it is in shot of capacity to meet its customer need. The
customer load risk can remarkably deteriorate the profitability of a power
plant. The close co-movement of the customer load and the electricity prices
may produce disastrous results. For example, when the spot price rockets,
the demand also rises high, the power plant has to buy extra power from
the spot market at high prices. In Chapter 5, we perform Monte Carlo
simulations with a deterministic or a stochastic customer load when price in
a forward customer contract is fixed. Even if the predetermined prices in the
forward contract is higher than the average of the predicted forward prices,
the power plant can not avoid a loss of value from the load uncertainty. A
load-servicing power plant must seek other tools to hedge the demand-side
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risk.

7.1.3 Investment Decision

The spark spread reflects explicitly the profitability of the generation asset
in unit time. Although we can not observe the spark spread directly in the
markets, we can construct a spark spread series with the traded electricity
and gas price data. For power plant valuation and investment analysis, tak-
ing the spark spread as the underlying variable has the following advantages.
Firstly, we can avoid the modeling of the correlation between the electric-
ity and the gas prices. This correlation is time-varying and burdensome to
handle. In a spark spread series, the correlation between the electricity and
the gas price is built-in always taken into account. The second advantage of
a spark spread series lies in its less significant seasonal patterns than elec-
tricity prices. This is due to the positive correlation between the electricity
and the gas prices. The co-movements of these two prices tend to offset the
seasonalities to some extent. For the same reason, a spark spread series has a
lower volatility and less prices jumps than electricity prices. With the dutch
market data, our empirical analysis in Chapter 6 supports these conclusions.

The one-factor Ornstein-Uhlenbeck model is a good approximation for
the historical spark spread data. The Ornstein-Uhlenbeck model can cap-
ture two important properties of a spark spread series: the mean reversion
and allowance for negative values. Furthermore, the Ornstein-Uhlenbeck
model is tractable and a closed-form solution for the term structure prices
is available. This provides much convenience when we perform the Monte
Carlo simulations for the cash flows of a power plant with forward prices.

The licence to build a new power plant is usually auctioned in deregulated
electricity markets. In Chapter 6, we model the licence as an American
option on an operating power plant, with investment cost being the strike
price. Moreover, the value of a base-load power plant is the sum of the values
of a string of forward contracts on the spark spreads during the lifetime of
the power plant, whereas the value of a peak-load power plant is the sum
of the values of string of call options on the spark spreads. With the one-
factor model, the option to wait contributes great value to the investment
opportunity, so does the option to expand the power plant capacity. In all
these investment options, a base-load power plant is preferred when the initial
spark spread is high, and a peak-load power plant is a better choice when
the initial spark spread is low.
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7.2 Discussions

In this section, we carry out discussions on four important issues related to
our research topic. Studies on these issues can be either a robustness test
of the conclusions obtained in this thesis, or an extension to the current
research.

7.2.1 Market Efficiency

The deregulation of the electricity markets is recent and the trading of main
commodities has only a short history. In continental Europe, the power trad-
ing was first introduced in 1999, the Dutch TTF gas hub began to operate
in 2003, and the emission allowance trading started in 2005. In the Dutch
APX markets, the day-ahead trading volume in 2006 amounts to 19 TWh,
but this represents less than 20% of the total electricity consumption in the
Netherlands. The wholesale market has not enough liquidity'. The market
power is believed to exist to some extent, which may be exploited by some
dominant players to manipulate the energy prices [NVV03]. In one word,
the electricity and gas markets are immature. This fact contradicts the as-
sumptions we have made in our research, where we believe the quoted prices
reflect all the information in the markets and all investors are price-takers.

The immaturity of the market yields different impacts on different types
of market players. In an immature market, if one investor does not have a
dominant power to affect the market, he or she will ask for an extra risk
premium for compensation. As a consequence, both the option-based peak-
load power plant value and the investment option value will be lower than
we have shown in Chapter 5 and Chapter 6. The optimal time to invest in a
power plant will be delayed accordingly. In contrast, for a dominant player
who has a certain level of market power, the adjustments needed to be done
will be exactly in the opposite direction [BCKO06).

7.2.2 Forward Price Dynamics

In this thesis, we focus on the spot prices of electricity and gas. This is
largely due to the fact that the spot market has a longer history and it is
more liquid.

INord Pool is the most liquid electricity market, where the trading volume in 2006
amounts to about 60% of the consumption.



7.2. DISCUSSIONS 153

Electricity is a non-storable commodity, so its expected return is not
usually equivalent to the risk-free rate under a martingale measure [NF04a]
[NFO4b]. For the pricing of the derivatives based on the spot price models,
we need to adjust the model by deducting a risk premium from the drift
term. In Chapter 6, we use the forward curve on the reporting day to derive
the market price of risk for the risk-neutral adjustment.

Electricity and gas forward prices are financial assets, and thus their ex-
pected returns under a martingale measure are equal to the risk-free interest
rate. In another word, if we believe the forward markets are efficient (again
this assumption is questionable, and long-maturity forward prices are less
reliable), we could use the forward price as the risk-neutral forecast prices
for the future spot prices [NF04].

To date, the Dutch derivatives market Endex has considerable trading
records in the forward contracts. The evolution of the forward curves defi-
nitely contains important information which reflects the expectation of the
markets. For electricity, the current spot price does not necessarily have any-
thing to do with the spot price at some future time point [Wer05]. Similarly,
no explicit connections exist between forward prices of different maturities.
However, forward prices are conditional expectations, thus the expectations
can be affected by the spot prices, especially for the near future prices. That
means, if we can filter out the seasonal patterns and structural changes in the
market, the forward prices could be handled by the term structure models.
Such examples can be found in [CS00], [MT02] and [KOO5].

With electricity and gas forward prices, we can construct the forward
spark spread prices and estimate the term structure model. An important
issue is to remove the seasonal factors in both the forward and the spot prices.
According to [KOO05], at least two factors are needed for the term structure
of spark spread.

7.2.3 Emission Cost

The emission cost has been an important component in determining the prof-
itability of power plants since the European Union Emission Trading Scheme
(ETS) was introduced. Phase one of this scheme has realized a mixed result.
The cap and trading has been proved to be a successful mechanism for green
house emissions reduction. The unsuccessful part of the scheme is that the
authorities have allocated too many emission allowances for free. Abundance
of allowances pulled the CO, quotes prices from above 30 Euro/ton to below
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10 Euro/ton.

Chapter 5 assumes a constant CO. cost and shows its negative impact
on a power plant value. With the CO, price data, we can build a stochastic
model and add COy price as an additional factor to the model. This brings
not much difficulty if we use the Monte Carlo simulation method to value a
power generation asset. One important issue is to estimate the correlation
between electricity (or spark spread) and CO, prices.

Chapter 6 avoids the CO5 impact by restricting the data sample to the
time without COs trading. If we assume the forward markets are efficient, we
could expect the forward electricity prices has already reflected the expected
COg costs. The increased variable cost from CO, will be passed on to the
end consumers. Again, we are left to judge how efficient the markets are.

In the year 2005 and 2006, electricity prices increased remarkably. The in-
creases in electricity prices cannot be explained fully by CO, costs. Other rea-
sons may include the increased demand, the increased fuel price, the changed
climate, and the generators’ strategies.

The ETS Phase Two is to start in 2008 in the European Union. Uncer-
tainties about the cap and the national allocation plans (NAPs) still remain.
Aggressive emission reduction plans from the UK encourages the EU’s per-
sistence to its Kyoto Protocol plan. In 2007, the EU leaders set a firm target
of cutting 20% of the EU’s greenhouse gas emissions by 2020°. Uncertainties
in COy costs implies difficulties in power plant valuation. For the investor
who holds now a licence to build a new power plant, the best strategy may
be to wait for more information about CO, prices to come.

7.2.4 Competition and Game Theory

In this thesis, we did not analyze the impact of competition explicitly. On
the one hand, we assume that the entry of a new generation capacity does not
have any substantial impact on the energy market prices..This assumption
is actually based on the market efficiency assumption. In efficient electricity
markets, the impact of new generation capacities will be fully reflected in the
forward prices. All market participants are price-takers. On the other hand,
we assume that the power plant investor has the monopoly on the option to
invest. The investment decision is not affected by his competitors.

2The EU will be willing to put this goal up to 30% if the US, China and India make
similar commitments.
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In the electricity supply industry, an analysis without competition may
not be realistic. The electricity and gas prices are actually realizing an equi-
librium at each second. Thus, a new gas-fired capacity may lead to a decrease
in electricity prices and an increase in gas prices, i.e., a decrease in spark
spreads. The impact on electricity prices can be analyzed by comparing the
marginal cost of the new capacity and the aggregate marginal cost of the
current capacities. Similarly, the impact on gas prices can be analyzed by
shifting the aggregate gas demand curve.

Game theory is a general approach to model decision-makings under com-
petition. In a game theoretic framework, the first-mover advantage exists in
new generation investment because decreased spark spread prices will dis-
courage the investment of other investors. Due to the short history of dereg-
ulation, the electricity markets are usually dominated by several big suppli-
ers. It seems reasonable to introduce oligopoly or duopoly models. With a
duopoly model, the Nash equilibrium solution will give the optimal strategy
for both players. It can be expected that including competition will lower the
option value and the licence price. In some simple cases, scenario analysis
may be a sufficient alternative approach.

7.3 Directions for Future Research

In Section 7.2, we explored the relevant issues along our research topic. These
discussions laid a foundation for the possibilities of extending the research.
We believe the following directions are of importance, from both the perspec-
tives of the academia and the practitioners:

e Richer models for the underlying variables. To go one step ahead from
Chapter 4 and Chapter 5, we can incorporate some fundamental in-
formation such as load, capacity, and temperature in the model. A
hybrid model will be able to capture more information and make more
accurate predictions. From Chapter 6, we can add a jump term to
the spark spread model to obtain a better goodness-of-fit. Given suffi-
cient forward data are available, we can use the forward term structure
model for derivatives pricing and compare the results with those of the
models based on spot prices.

e Explicit modeling of COy cost. The COy cost has been an important
component in power plant valuation and investment decision-makings.
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A lognormal mean reverting process may be a suitable approximation
for the traded prices. In addition, the price plummet in April 2006 and
the NAPs of Phase Two should be reflected by structural changes. We
can also model CO, cost as additional real options following the spirit

of [SC99).

Explicit modeling of competition. Following the discussion in Section
7.2, we can analyze the changes of the aggregate supply and demand
curves brought by competition and see how much they can impact the
energy prices. Alternatively, we can apply the game theoretic models
to a competitive market.
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Abstract

Electricity prices are notoriously hard to model due to their exotic behav-
iors. The extraordinarily high volatilities, strong mean reversion, pronounced
cyclical price patterns, and occasional occurrence of price spikes may demand
very complicated models.

From the empirical analysis with the Dutch and German electricity mar-
ket data, we find that the two-state regime switching models have a superior
performance than a jump diffusion model in terms of replicating the higher
moments in the historical data and forecasting electricity prices.

The real options method has been used in the valuation of energy assets
and the decision-makings in operation and investment in power plants. Our
empirical simulation results show that power plant values can be decreased
by volumetric risk factors from both the supply side and the demand side.

Investment opportunities in power plants can be valued as American op-
tions. We value different types of investment options by using both the Hull
and White trinomial tree and the Least Squares Monte Carlo method. We
confirm the conclusion that the option value to invest in a peak-load power
plant is higher than the option to invest in a base-load power plant when the
spark spread is lower, and verse visa.





